Summary of product characteristics
Indications And Usage
1 INDICATIONS AND USAGE NIKITA is indicated as an adjunct to diet to reduce low-density lipoprotein cholesterol (LDL-C) in: Adults with primary hyperlipidemia. Pediatric use information is approved for Kowa Co Ltd's LIVALO (pitavastatin) tablets. However, due to Kowa Co Ltd's marketing exclusivity rights, this drug product is not labeled with that information. NIKITA is a HMG-CoA reductase inhibitor (statin) indicated as an adjunct to diet to reduce low-density lipoprotein cholesterol (LDL-C) in: ( 1 ) Adults with primary hyperlipidemia.
Adverse Reactions
6 ADVERSE REACTIONS The following serious adverse reactions are discussed in other sections of the labeling: Myopathy and Rhabdomyolysis [see Warnings and Precautions ( 5.1 )] Immune-Mediated Necrotizing Myopathy [see Warning and Precautions ( 5.2 )] Hepatic Dysfunction [see Warning and Precautions ( 5.3 )] Increases in HbA1c and Fasting Serum Glucose Levels [see Warning and Precautions ( 5.4 )]. The most frequent adverse reactions (rate ≥ 2%) were myalgia, constipation, diarrhea, back pain, and pain in extremity. ( 6 ) To report SUSPECTED ADVERSE REACTIONS, contact Lupin Pharmaceuticals, Inc. at 1-800-399-2561 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch. 6.1 Clinical Studies Experience Because clinical studies are conducted under widely varying conditions, adverse reaction rates observed in the clinical studies of one drug cannot be directly compared to rates in the clinical studies of another drug and may not reflect the rates observed in practice. Adverse Reactions in Adults with Primary Hyperlipidemia In 10 controlled clinical studies and 4 subsequent open-label extension studies, 3,291 adult patients with primary hyperlipidemia were administered pitavastatin 1 mg to 4 mg daily. The mean continuous exposure of pitavastatin (1 mg to 4 mg) was 36.7 weeks (median 51.1 weeks). The mean age of the patients was 60.9 years (range; 18 years to 89 years) and 52% were females. Approximately 93% of the patients were White, 7% were Asian/Indian, 0.2% were African American and 0.3% were Hispanic and other. In controlled clinical studies and their open-label extensions, 3.9% (1 mg), 3.3% (2 mg), and 3.7% (4 mg) of pitavastatin-treated patients were discontinued due to adverse reactions. The most common adverse reactions that led to treatment discontinuation were: elevated creatine phosphokinase (0.6% on 4 mg) and myalgia (0.5% on 4 mg). Adverse reactions reported in > 2% of patients in controlled clinical studies and at a rate greater than or equal to placebo are shown in Table 1. These studies had treatment duration of up to 12 weeks. Table 1: Adverse Reactions (≥ 2% and ≥ placebo) in Adults with Primary Hyperlipidemia in Studies up to 12 Weeks Adverse Reactions Placebo (n= 208) % Pitavastatin 1 mg (n=309) % Pitavastatin 2 mg (n=951) % Pitavastatin 4 mg (n=1540) % Myalgia 1.4 1.9 2.8 3.1 Constipation 1.9 3.6 1.5 2.2 Diarrhea 1.9 2.6 1.5 1.9 Back Pain 2.9 3.9 1.8 1.4 Pain in extremity 1.9 2.3 0.6 0.9 Other adverse reactions reported from clinical studies were arthralgia, headache, influenza, and nasopharyngitis. Hypersensitivity reactions including rash, pruritus, and urticaria have been reported with pitavastatin. The following laboratory abnormalities have been reported: elevated creatine phosphokinase, transaminases, alkaline phosphatase, bilirubin, and glucose. Adverse Reactions in Adult HIV-Infected Patients with Dyslipidemia In a double-blind, randomized, controlled, 52-week trial, 252 HIV-infected patients with dyslipidemia were treated with either pitavastatin 4 mg once daily (n=126) or another statin (n=126). All patients were taking antiretroviral therapy (excluding darunavir) and had HIV-1 RNA less than 200 copies/mL and CD4 count greater than 200 cell/µL for at least 3 months prior to randomization. The safety profile of pitavastatin was generally consistent with that observed in the clinical trials described above. One patient (0.8%) treated with pitavastatin had a peak creatine phosphokinase value exceeding 10 times the upper limit of normal (ULN), which resolved spontaneously. Four patients (3%) treated with pitavastatin had at least one ALT value exceeding 3 times but less than 5 times the ULN, none of which led to drug discontinuation. Virologic failure was reported for four patients (3%) treated with pitavastatin, defined as a confirmed measurement of HIV-1 RNA exceeding 200 copies/mL that was also more than a 2-fold increase from baseline. Pediatric use information is approved for Kowa Co Ltd's LIVALO (pitavastatin) tablets. However, due to Kowa Co Ltd's marketing exclusivity rights, this drug product is not labeled with that information. 6.2 Postmarketing Experience The following adverse reactions have been identified during postapproval use of pitavastatin. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Gastrointestinal disorders: abdominal discomfort, abdominal pain, dyspepsia, nausea General disorders: asthenia, fatigue, malaise, dizziness Hepatobiliary disorders: hepatitis, jaundice, fatal and non-fatal hepatic failure Immune system disorders: angioedema, immune-mediated necrotizing myopathy associated with statin use. Metabolism and nutrition disorders: increases in HbA1c, fasting serum glucose levels Musculoskeletal and connective tissue disorders: muscle spasms, myopathy, rhabdomyolysis Nervous system disorders: hypoesthesia, peripheral neuropathy Psychiatric disorders: insomnia, depression. Rare reports of cognitive impairment (e.g., memory loss, forgetfulness, amnesia, memory impairment, confusion) associated with statin use. Cognitive impairment was generally nonserious, and reversible upon statin discontinuation, with variable times to symptom onset (1 day to years) and symptom resolution (median of 3 weeks). Reproductive system and breast disorders: erectile dysfunction Respiratory, thoracic and mediastinal disorders: interstitial lung disease Skin and subcutaneous tissue disorders: lichen planus
Contraindications
4 CONTRAINDICATIONS NIKITA is contraindicated in the following conditions: Concomitant use of cyclosporine [see Drug Interactions ( 7 )]. Acute liver failure or decompensated cirrhosis [see Warnings and Precautions ( 5.3 )] . Hypersensitivity to pitavastatin or any excipents in NIKITA. Hypersensitivity reactions including angioedema, rash, pruritus, and urticaria have been reported with NIKITA [see Adverse Reactions ( 6 )] . Cyclosporine ( 4 , 7 ) Active liver failure or decompensated cirrhosis ( 4 , 5.3 ) Hypersensitivity to pitavastatin or any excipients in NIKITA ( 4 )
Description
11 DESCRIPTION NIKITA (pitavastatin) tablets for oral use is an HMG-CoA reductase inhibitor. The chemical name for pitavastatin is Sodium (3R, 5S, E)-7-(2-cyclopropyl-4-(4-fluorophenyl)-quinolin-3-yl)-3, 5-dihydroxyhept-6-enoate. The structural formula is: The empirical formula for pitavastatin is C 25 H 23 FNO 4 Na and the molecular weight is 443.15. Pitavastatin occurs as white to pale yellow powder. It is slightly soluble in N, N-Dimethylformamide. Pitavastatin is slightly hygroscopic in nature and slightly unstable in light. Each film-coated tablet of NIKITA TM contains 1.052 mg, 2.103 mg, or 4.206 mg of pitavastatin sodium, which is equivalent to 1 mg, 2 mg, or 4 mg, respectively of pitavastatin, and the following inactive ingredients: hypromellose, lactose monohydrate, low substituted hydroxypropylcellulose, magnesium stearate and sodium bicarbonate and film coating containing the following inactive ingredients: colloidal anhydrous silica, hypromellose, titanium dioxide and triethyl citrate. Image
Dosage And Administration
2 DOSAGE AND ADMINISTRATION Take orally once daily with or without food at the same time each day. ( 2.1 ) For patients requiring a high-intensity statin or are unable to achieve their LDL-C goal receiving NIKITA 4 mg daily, prescribe alternative LDL-C-lowering treatment. ( 2.1 ) Assess LDL-C when clinically appropriate, as early as 4 weeks after initiation of NIKITA, and adjust the dosage if necessary. ( 2.1 ) Recommended dosage is 2 mg to 4 mg once daily. Maximum recommended dosage is 4 mg once daily. ( 2.2 ) Recommended starting dosage for patients with moderate and severe renal impairment and end-stage renal disease on hemodialysis is 1 mg once daily. Maximum recommended dosage is 2 mg once daily. ( 2.3 ) See full prescribing information for NIKITA dosage modifications due to drug interactions. ( 2.4 ) 2.1 Important Dosage and Administration Information Take NIKITA orally once daily with or without food at the same time each day. For patients that require a high-intensity statin or are unable to achieve their LDL-C goal receiving NIKITA 4 mg daily, prescribe alternative LDL-C-lowering treatment. Assess LDL-C when clinically appropriate, as early as 4 weeks after initiating NIKITA, and adjust the dosage if necessary. 2.2 Recommended Dosage for Adults The recommended dosage range of NIKITA is 2 mg to 4 mg daily. The maximum recommended dosage is NIKITA 4 mg once daily. 2.3 Recommended Dosage in Patients with Renal Impairment The recommended starting dosage for patients with moderate and severe renal impairment (estimated glomerular filtration rate 30 to 59 mL/minute/1.73 m 2 and 15 to 29 mL/minute/1.73 m 2 , respectively) and patients with end-stage renal disease receiving hemodialysis is NIKITA 1 mg once daily. The maximum recommended dose for these patients is NIKITA 2 mg once daily [see Use in Specific Populations ( 8.5 )] . There are no dosage adjustment recommendations for patients with mild renal impairment. 2.4 Dosage Modifications Due to Drug Interactions In patients taking erythromycin, do not exceed NIKITA 1 mg once daily [see Drug Interactions ( 7 )] . In patients taking rifampin, do not exceed NIKITA 2 mg once daily [see Drug Interactions ( 7 )] . Pediatric use information is approved for Kowa Co Ltd's LIVALO (pitavastatin) tablets. However, due to Kowa Co Ltd's marketing exclusivity rights, this drug product is not labeled with that information.
Overdosage
10 OVERDOSAGE No specific treatment for NIKITA overdose is known. Contact Poison Control (1-800-222-1222) for latest recommendations. Hemodialysis is unlikely to be of benefit due to high protein binding ratio of NIKITA.
Adverse Reactions Table
Adverse Reactions | Placebo (n= 208) % | Pitavastatin 1 mg (n=309) % | Pitavastatin 2 mg (n=951) % | Pitavastatin 4 mg (n=1540) % |
Myalgia | 1.4 | 1.9 | 2.8 | 3.1 |
Constipation | 1.9 | 3.6 | 1.5 | 2.2 |
Diarrhea | 1.9 | 2.6 | 1.5 | 1.9 |
Back Pain | 2.9 | 3.9 | 1.8 | 1.4 |
Pain in extremity | 1.9 | 2.3 | 0.6 | 0.9 |
Drug Interactions
7 DRUG INTERACTIONS Table 2 includes a list of drugs that increase the risk of myopathy and rhabdomyolysis when administered concomitantly with NIKITA and instructions for preventing or managing drug interactions [see Warnings and Precautions ( 5.1 ), Clinical Pharmacology ( 12.3 )]. Table 2: Drug Interactions that Increase the Risk of Myopathy and Rhabdomyolysis with NIKITA Cyclosporine Clinical Impact: Cyclosporine significantly increases pitavastatin exposure and increases the risk of myopathy and rhabdomyolysis . Intervention: Concomitant use of cyclosporine with NIKITA is contraindicated [see Contraindications ( 4 )]. Gemfibrozil Clinical Impact: Gemfibrozil may cause myopathy when given alone. The risk of myopathy and rhabdomyolysis is increased with concomitant use of gemfibrozil with statins, including NIKITA. Intervention: Avoid concomitant use of gemfibrozil with NIKITA. Erythromycin Clinical Impact: Erythromycin significantly increases pitavastatin exposure and increases the risk of myopathy and rhabdomyolysis . Intervention: In patients taking erythromycin, do not exceed NIKITA 1 mg once daily [see Dosage and Administration ( 2.4 )]. Rifampin Clinical Impact: Rifampin significantly increases peak pitavastatin exposure and increases the risk of myopathy and rhabdomyolysis . Intervention: In patients taking rifampin, do not exceed NIKITA 2 mg once daily [see Dosage and Administration ( 2.4 )]. Fibrates Clinical Impact: Fibrates may cause myopathy when given alone. The risk of myopathy and rhabdomyolysis is increased with concomitant use of fibrates with statins, including NIKITA. Intervention: Consider if the benefit of using fibrates concomitantly with NIKITA outweighs the increased risk of myopathy and rhabdomyolysis. Niacin Clinical Impact: The risk of myopathy and rhabdomyolysis may be increased with concomitant use of lipid modifying doses (≥1 g/day) of niacin with NIKITA. Intervention: Consider if the benefit of using lipid-modifying doses ( > 1 g/day) of niacin concomitantly with NIKITA outweighs the increased risk of myopathy and rhabdomyolysis. Colchicine Clinical Impact: Cases of myopathy and rhabdomyolysis have been reported with concomitant use of colchicine with statins, including NIKITA. Intervention: Consider the risk/benefit of concomitant use of colchicine with NIKITA. See full prescribing information for details regarding concomitant use of NIKITA with other drugs that increase the risk of myopathy and rhabdomyolysis. ( 2.4 , 7 )
Drug Interactions Table
Cyclosporine | |
Clinical Impact: | Cyclosporine significantly increases pitavastatin exposure and increases the risk of myopathy and rhabdomyolysis. |
Intervention: | Concomitant use of cyclosporine with NIKITA is contraindicated [see Contraindications ( |
Gemfibrozil | |
Clinical Impact: | Gemfibrozil may cause myopathy when given alone. The risk of myopathy and rhabdomyolysis is increased with concomitant use of gemfibrozil with statins, including NIKITA. |
Intervention: | Avoid concomitant use of gemfibrozil with NIKITA. |
Erythromycin | |
Clinical Impact: | Erythromycin significantly increases pitavastatin exposure and increases the risk of myopathy and rhabdomyolysis. |
Intervention: | In patients taking erythromycin, do not exceed NIKITA 1 mg once daily [see Dosage and Administration ( |
Rifampin | |
Clinical Impact: | Rifampin significantly increases peak pitavastatin exposure and increases the risk of myopathy and rhabdomyolysis. |
Intervention: | In patients taking rifampin, do not exceed NIKITA 2 mg once daily [see Dosage and Administration ( |
Fibrates | |
Clinical Impact: | Fibrates may cause myopathy when given alone. The risk of myopathy and rhabdomyolysis is increased with concomitant use of fibrates with statins, including NIKITA. |
Intervention: | Consider if the benefit of using fibrates concomitantly with NIKITA outweighs the increased risk of myopathy and rhabdomyolysis. |
Niacin | |
Clinical Impact: | The risk of myopathy and rhabdomyolysis may be increased with concomitant use of lipid modifying doses (≥1 g/day) of niacin with NIKITA. |
Intervention: | Consider if the benefit of using lipid-modifying doses (> 1 g/day) of niacin concomitantly with NIKITA outweighs the increased risk of myopathy and rhabdomyolysis. |
Colchicine | |
Clinical Impact: | Cases of myopathy and rhabdomyolysis have been reported with concomitant use of colchicine with statins, including NIKITA. |
Intervention: | Consider the risk/benefit of concomitant use of colchicine with NIKITA. |
Clinical Pharmacology
12 CLINICAL PHARMACOLOGY 12.1 Mechanism of Action Pitavastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the enzyme that catalyzes the conversion of HMG-CoA to mevalonate, a rate-limiting step in the biosynthetic pathway for cholesterol. As a result, the expression of LDL-receptors followed by the uptake of LDL from blood to liver is accelerated and then the plasma TC decreases. Sustained inhibition of cholesterol synthesis in the liver also decreases levels of very low density lipoproteins. 12.2 Pharmacodynamics Cardiac Electrophysiology In a randomized, double-blind, placebo-controlled, 4-way parallel, active-comparator study with moxifloxacin in 174 healthy participants, pitavastatin was not associated with clinically meaningful prolongation of the QTc interval or heart rate at daily doses up to 16 mg (4 times the recommended maximum dose of 4 mg daily). 12.3 Pharmacokinetics Absorption Pitavastatin peak plasma concentrations are achieved about 1 hour after oral administration. Both C max and AUC 0 to inf increased in an approximately dose-proportional manner for single pitavastatin doses from 1 mg to 24 mg once daily. The absolute bioavailability of pitavastatin oral solution is 51%. The C max and AUC of pitavastatin did not differ following evening or morning drug administration. In healthy volunteers receiving 4 mg pitavastatin, the percent change from baseline for LDL-C following evening dosing was slightly greater than that following morning dosing. Pitavastatin was absorbed in the small intestine but very little in the colon. Effect of Food: Administration of pitavastatin with a high fat meal (50% fat content) decreases pitavastatin C max by 43% but does not significantly reduce pitavastatin AUC. Distribution Pitavastatin is more than 99% protein bound in human plasma, mainly to albumin and alpha 1-acid glycoprotein, and the mean volume of distribution is approximately 148 L. Elimination Metabolism The principal route of pitavastatin metabolism is glucuronidation via liver uridine 5'-diphosphate glucuronosyltransferase (UGT) with subsequent formation of pitavastatin lactone. There is only minimal metabolism by the cytochrome P450 system. Pitavastatin is marginally metabolized by CYP2C9 and to a lesser extent by CYP2C8. The major metabolite in human plasma is the lactone, which is formed via an ester-type pitavastatin glucuronide conjugate by UGTs (UGT1A3 and UGT2B7). Excretion A mean of 15% of radioactivity of orally administered, single 32 mg 14 C-labeled pitavastatin dose was excreted in urine, whereas a mean of 79% of the dose was excreted in feces within 7 days. The mean plasma elimination half-life is approximately 12 hours. Specific Populations Geriatric Patients In a pharmacokinetic study which compared healthy young and geriatric (≥65 years) volunteers, pitavastatin C max and AUC were 10 and 30% higher, respectively, in the geriatric patients [see Use in Specific Populations ( 8.4 )] Pediatric use information is approved for Kowa Co Ltd's LIVALO (pitavastatin) tablets. However, due to Kowa Co Ltd's marketing exclusivity rights, this drug product is not labeled with that information. Male and Female Patients In a pharmacokinetic study, which compared healthy male and female volunteers, pitavastatin Cmax and AUC were 60 and 54% higher, respectively in females. Racial or Ethnic Groups In pharmacokinetic studies pitavastatin Cmax and AUC were 21 and 5% lower, respectively in Black or African American healthy volunteers compared with those of White healthy volunteers. In pharmacokinetic comparison between White volunteers and Japanese volunteers, there were no significant differences in Cmax and AUC. Patients with Renal Impairment In adult patients with moderate renal impairment (estimated glomerular filtration rate of 30 to 59 mL/min/1.73 m 2 ) and end stage renal disease receiving hemodialysis, pitavastatin AUC 0 to inf is 102% and 86% higher than those of healthy volunteers, respectively, while pitavastatin C max is 60% and 40% higher than those of healthy volunteers, respectively. Patients received hemodialysis immediately before pitavastatin dosing and did not undergo hemodialysis during the pharmacokinetic study. Hemodialysis patients have 33% and 36% increases in the mean unbound fraction of pitavastatin as compared to healthy volunteers and patients with moderate renal impairment, respectively [see Use in Specific Populations ( 8.5 )] . In another pharmacokinetic study, adult patients with severe renal impairment (estimated glomerular filtration rate 15 to 29 mL/min/1.73 m 2 ) not receiving hemodialysis were administered a single dose of pitavastatin 4 mg. The AUC 0 to inf and the C max were 36% and 18% higher, respectively, compared with those of healthy volunteers. For both patients with severe renal impairment and healthy volunteers, the mean percentage of protein-unbound pitavastatin was approximately 0.6% [see Use in Specific Populations ( 8.5 )] . The effect of mild renal impairment on pitavastatin exposure has not been studied. Patients with Hepatic Impairment The disposition of pitavastatin was compared in healthy volunteers and patients with various degrees of hepatic impairment. Pitavastatin C max and AUC inf in patients with moderate hepatic impairment (Child-Pugh B disease) was 2.7-fold and 3.8-fold higher, respectively as compared to healthy volunteers. In patients with mild hepatic impairment (Child-Pugh A disease), pitavastatin C max and AUC inf were 30% and 60% higher as compared to healthy volunteers. Mean pitavastatin half-life for moderate hepatic impairment, mild hepatic impairment, and healthy volunteers were 15, 10, and 8 hours, respectively [see Contraindications ( 4 ), Warnings and Precautions ( 5.3 )] . Drug Interaction Studies Warfarin The steady-state pharmacodynamics (international normalized ratio [INR] and prothrombin time [PT]) and pharmacokinetics of warfarin in healthy volunteers were unaffected by the coadministration of pitavastatin 4 mg daily. Table 3 presents the effect of coadministered drugs on pitavastatin systemic exposure: Table 3: Effect of Coadministered Drugs on Pitavastatin Systemic Exposure Coadministered drug Dosage regimen Change in AUC* Change in C max * Cyclosporine Pitavastatin 2 mg QD for 6 days + cyclosporine 2 mg/kg on Day 6 ↑ 4.6 fold † ↑ 6.6 fold † Erythromycin Pitavastatin 4 mg single dose on Day 4 + erythromycin 500 mg 4 times daily for 6 days ↑ 2.8 fold † ↑ 3.6 fold † Rifampin Pitavastatin 4 mg QD + rifampin 600 mg QD for 5 days ↑ 29% ↑ 2.0 fold † Atazanavir Pitavastatin 4 mg QD + atazanavir 300 mg daily for 5 days ↑ 31% ↑ 60% Darunavir/Ritonavir Pitavastatin 4mg QD on Days 1 to 5 and 12 to 16 + darunavir/ritonavir 800mg/100 mg QD on Days 6 to 16 ↓ 26% ↓ 4% Lopinavir/Ritonavir Pitavastatin 4 mg QD on Days 1 to 5 and 20 to 24 + lopinavir/ritonavir 400 mg/100 mg BID on Days 9 to 24 ↓ 20% ↓4 % Gemfibrozil Pitavastatin 4 mg QD + gemfibrozil 600 mg BID for 7 days ↑ 45% ↑ 31% Fenofibrate Pitavastatin 4 mg QD + fenofibrate 160 mg QD for 7 days ↑18% ↑ 11% Ezetimibe Pitavastatin 2 mg QD + ezetimibe 10 mg for 7 days ↓ 2% ↓0.2% Enalapril Pitavastatin 4 mg QD + enalapril 20 mg daily for 5 days ↑ 6% ↓ 7% Digoxin Pitavastatin 4 mg QD + digoxin 0.25 mg for 7 days ↑ 4% ↓ 9% Diltiazem LA Pitavastatin 4 mg QD on Days 1 to 5 and 11 to 15 and diltiazem LA 240 mg on Days 6 to 15 ↑10% ↑15% Grapefruit Juice Pitavastatin 2 mg single dose on Day 3 + grapefruit juice for 4 days ↑ 15% ↓ 12% Itraconazole Pitavastatin 4 mg single dose on Day 4 + itraconazole 200 mg daily for 5 days ↓ 23% ↓ 22% * Data presented as x-fold change represent the ratio between coadministration and pitavastatin alone (i.e., 1-fold = no change). Data presented as % change represent % difference relative to pitavastatin alone (i.e., 0% = no change). † Considered clinically significant [see Dosage and Administration ( 2.4 ), Drug Interactions ( 7 )] BID = twice daily; QD = once daily; LA = Long Acting Table 4 presents the effect of pitavastatin coadministration on systemic exposure of other drugs: Table 4: Effect of Pitavastatin Coadministration on Systemic Exposure to Other Drugs Coadministered drug Dosage regimen Change in AUC* Change in C max * Atazanavir Pitavastatin 4 mg QD + atazanavir 300 mg daily for 5 days ↑ 6% ↑ 13% Darunavir Pitavastatin 4mg QD on Days 1 to 5 and 12 to 16 + darunavir/ritonavir 800mg/100 mg QD on Days 6 to 16 ↑ 3% ↑ 6% Lopinavir Pitavastatin 4 mg QD on Days 1 to 5 and 20 to 24 + lopinavir/ritonavir 400 mg/100 mg BID on Days 9 to 24 ↓ 9% ↓ 7% Ritonavir Pitavastatin 4 mg QD on Days 1 to 5 and 20 to 24 + lopinavir/ritonavir 400 mg/100 mg BID on Days 9 to 24 ↓ 11% ↓ 11% Ritonavir Pitavastatin 4mg QD on Days 1 to 5 and 12 to 16 + darunavir/ritonavir 800mg/100 mg QD on Days 6 to 16 ↑ 8% ↑ 2% Enalapril Pitavastatin 4 mg QD + enalapril 20 mg daily for 5 days Enalapril ↑ 12% ↑ 12% Enalaprilat ↓ 1% ↓ 1% Warfarin Individualized maintenance dose of warfarin (2 to 7 mg) for 8 days + pitavastatin 4 mg QD for 9 days R-warfarin ↑ 7% ↑ 3% S-warfarin ↑ 6% ↑ 3% Ezetimibe Pitavastatin 2 mg QD + ezetimibe 10 mg for 7 days ↑ 9% ↑ 2% Digoxin Pitavastatin 4 mg QD + digoxin 0.25 mg for 7 days ↓ 3% ↓ 4% Diltiazem LA Pitavastatin 4 mg QD on Days 1 to 5 and 11 to 15 and diltiazem LA 240 mg on Days 6 to 15 ↓ 2% ↓ 7% Rifampin Pitavastatin 4 mg QD + rifampin 600 mg QD for 5 days ↓ 15% ↓ 18% * Data presented as % change represent % difference relative to the investigated drug alone (i.e., 0% = no change). BID = twice daily; QD = once daily; LA = Long Acting
Clinical Pharmacology Table
Coadministered drug | Dosage regimen | Change in AUC* | Change in Cmax * |
Cyclosporine | Pitavastatin 2 mg QD for 6 days + cyclosporine 2 mg/kg on Day 6 | ↑ 4.6 fold † | ↑ 6.6 fold † |
Erythromycin | Pitavastatin 4 mg single dose on Day 4 + erythromycin 500 mg 4 times daily for 6 days | ↑ 2.8 fold † | ↑ 3.6 fold † |
Rifampin | Pitavastatin 4 mg QD + rifampin 600 mg QD for 5 days | ↑ 29% | ↑ 2.0 fold † |
Atazanavir | Pitavastatin 4 mg QD + atazanavir 300 mg daily for 5 days | ↑ 31% | ↑ 60% |
Darunavir/Ritonavir | Pitavastatin 4mg QD on Days 1 to 5 and 12 to 16 + darunavir/ritonavir 800mg/100 mg QD on Days 6 to 16 | ↓ 26% | ↓ 4% |
Lopinavir/Ritonavir | Pitavastatin 4 mg QD on Days 1 to 5 and 20 to 24 + lopinavir/ritonavir 400 mg/100 mg BID on Days 9 to 24 | ↓ 20% | ↓4 % |
Gemfibrozil | Pitavastatin 4 mg QD + gemfibrozil 600 mg BID for 7 days | ↑ 45% | ↑ 31% |
Fenofibrate | Pitavastatin 4 mg QD + fenofibrate 160 mg QD for 7 days | ↑18% | ↑ 11% |
Ezetimibe | Pitavastatin 2 mg QD + ezetimibe 10 mg for 7 days | ↓ 2% | ↓0.2% |
Enalapril | Pitavastatin 4 mg QD + enalapril 20 mg daily for 5 days | ↑ 6% | ↓ 7% |
Digoxin | Pitavastatin 4 mg QD + digoxin 0.25 mg for 7 days | ↑ 4% | ↓ 9% |
Diltiazem LA | Pitavastatin 4 mg QD on Days 1 to 5 and 11 to 15 and diltiazem LA 240 mg on Days 6 to 15 | ↑10% | ↑15% |
Grapefruit Juice | Pitavastatin 2 mg single dose on Day 3 + grapefruit juice for 4 days | ↑ 15% | ↓ 12% |
Itraconazole | Pitavastatin 4 mg single dose on Day 4 + itraconazole 200 mg daily for 5 days | ↓ 23% | ↓ 22% |
Mechanism Of Action
12.1 Mechanism of Action Pitavastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the enzyme that catalyzes the conversion of HMG-CoA to mevalonate, a rate-limiting step in the biosynthetic pathway for cholesterol. As a result, the expression of LDL-receptors followed by the uptake of LDL from blood to liver is accelerated and then the plasma TC decreases. Sustained inhibition of cholesterol synthesis in the liver also decreases levels of very low density lipoproteins.
Pharmacodynamics
12.2 Pharmacodynamics Cardiac Electrophysiology In a randomized, double-blind, placebo-controlled, 4-way parallel, active-comparator study with moxifloxacin in 174 healthy participants, pitavastatin was not associated with clinically meaningful prolongation of the QTc interval or heart rate at daily doses up to 16 mg (4 times the recommended maximum dose of 4 mg daily).
Pharmacokinetics
12.3 Pharmacokinetics Absorption Pitavastatin peak plasma concentrations are achieved about 1 hour after oral administration. Both C max and AUC 0 to inf increased in an approximately dose-proportional manner for single pitavastatin doses from 1 mg to 24 mg once daily. The absolute bioavailability of pitavastatin oral solution is 51%. The C max and AUC of pitavastatin did not differ following evening or morning drug administration. In healthy volunteers receiving 4 mg pitavastatin, the percent change from baseline for LDL-C following evening dosing was slightly greater than that following morning dosing. Pitavastatin was absorbed in the small intestine but very little in the colon. Effect of Food: Administration of pitavastatin with a high fat meal (50% fat content) decreases pitavastatin C max by 43% but does not significantly reduce pitavastatin AUC. Distribution Pitavastatin is more than 99% protein bound in human plasma, mainly to albumin and alpha 1-acid glycoprotein, and the mean volume of distribution is approximately 148 L. Elimination Metabolism The principal route of pitavastatin metabolism is glucuronidation via liver uridine 5'-diphosphate glucuronosyltransferase (UGT) with subsequent formation of pitavastatin lactone. There is only minimal metabolism by the cytochrome P450 system. Pitavastatin is marginally metabolized by CYP2C9 and to a lesser extent by CYP2C8. The major metabolite in human plasma is the lactone, which is formed via an ester-type pitavastatin glucuronide conjugate by UGTs (UGT1A3 and UGT2B7). Excretion A mean of 15% of radioactivity of orally administered, single 32 mg 14 C-labeled pitavastatin dose was excreted in urine, whereas a mean of 79% of the dose was excreted in feces within 7 days. The mean plasma elimination half-life is approximately 12 hours. Specific Populations Geriatric Patients In a pharmacokinetic study which compared healthy young and geriatric (≥65 years) volunteers, pitavastatin C max and AUC were 10 and 30% higher, respectively, in the geriatric patients [see Use in Specific Populations ( 8.4 )] Pediatric use information is approved for Kowa Co Ltd's LIVALO (pitavastatin) tablets. However, due to Kowa Co Ltd's marketing exclusivity rights, this drug product is not labeled with that information. Male and Female Patients In a pharmacokinetic study, which compared healthy male and female volunteers, pitavastatin Cmax and AUC were 60 and 54% higher, respectively in females. Racial or Ethnic Groups In pharmacokinetic studies pitavastatin Cmax and AUC were 21 and 5% lower, respectively in Black or African American healthy volunteers compared with those of White healthy volunteers. In pharmacokinetic comparison between White volunteers and Japanese volunteers, there were no significant differences in Cmax and AUC. Patients with Renal Impairment In adult patients with moderate renal impairment (estimated glomerular filtration rate of 30 to 59 mL/min/1.73 m 2 ) and end stage renal disease receiving hemodialysis, pitavastatin AUC 0 to inf is 102% and 86% higher than those of healthy volunteers, respectively, while pitavastatin C max is 60% and 40% higher than those of healthy volunteers, respectively. Patients received hemodialysis immediately before pitavastatin dosing and did not undergo hemodialysis during the pharmacokinetic study. Hemodialysis patients have 33% and 36% increases in the mean unbound fraction of pitavastatin as compared to healthy volunteers and patients with moderate renal impairment, respectively [see Use in Specific Populations ( 8.5 )] . In another pharmacokinetic study, adult patients with severe renal impairment (estimated glomerular filtration rate 15 to 29 mL/min/1.73 m 2 ) not receiving hemodialysis were administered a single dose of pitavastatin 4 mg. The AUC 0 to inf and the C max were 36% and 18% higher, respectively, compared with those of healthy volunteers. For both patients with severe renal impairment and healthy volunteers, the mean percentage of protein-unbound pitavastatin was approximately 0.6% [see Use in Specific Populations ( 8.5 )] . The effect of mild renal impairment on pitavastatin exposure has not been studied. Patients with Hepatic Impairment The disposition of pitavastatin was compared in healthy volunteers and patients with various degrees of hepatic impairment. Pitavastatin C max and AUC inf in patients with moderate hepatic impairment (Child-Pugh B disease) was 2.7-fold and 3.8-fold higher, respectively as compared to healthy volunteers. In patients with mild hepatic impairment (Child-Pugh A disease), pitavastatin C max and AUC inf were 30% and 60% higher as compared to healthy volunteers. Mean pitavastatin half-life for moderate hepatic impairment, mild hepatic impairment, and healthy volunteers were 15, 10, and 8 hours, respectively [see Contraindications ( 4 ), Warnings and Precautions ( 5.3 )] . Drug Interaction Studies Warfarin The steady-state pharmacodynamics (international normalized ratio [INR] and prothrombin time [PT]) and pharmacokinetics of warfarin in healthy volunteers were unaffected by the coadministration of pitavastatin 4 mg daily. Table 3 presents the effect of coadministered drugs on pitavastatin systemic exposure: Table 3: Effect of Coadministered Drugs on Pitavastatin Systemic Exposure Coadministered drug Dosage regimen Change in AUC* Change in C max * Cyclosporine Pitavastatin 2 mg QD for 6 days + cyclosporine 2 mg/kg on Day 6 ↑ 4.6 fold † ↑ 6.6 fold † Erythromycin Pitavastatin 4 mg single dose on Day 4 + erythromycin 500 mg 4 times daily for 6 days ↑ 2.8 fold † ↑ 3.6 fold † Rifampin Pitavastatin 4 mg QD + rifampin 600 mg QD for 5 days ↑ 29% ↑ 2.0 fold † Atazanavir Pitavastatin 4 mg QD + atazanavir 300 mg daily for 5 days ↑ 31% ↑ 60% Darunavir/Ritonavir Pitavastatin 4mg QD on Days 1 to 5 and 12 to 16 + darunavir/ritonavir 800mg/100 mg QD on Days 6 to 16 ↓ 26% ↓ 4% Lopinavir/Ritonavir Pitavastatin 4 mg QD on Days 1 to 5 and 20 to 24 + lopinavir/ritonavir 400 mg/100 mg BID on Days 9 to 24 ↓ 20% ↓4 % Gemfibrozil Pitavastatin 4 mg QD + gemfibrozil 600 mg BID for 7 days ↑ 45% ↑ 31% Fenofibrate Pitavastatin 4 mg QD + fenofibrate 160 mg QD for 7 days ↑18% ↑ 11% Ezetimibe Pitavastatin 2 mg QD + ezetimibe 10 mg for 7 days ↓ 2% ↓0.2% Enalapril Pitavastatin 4 mg QD + enalapril 20 mg daily for 5 days ↑ 6% ↓ 7% Digoxin Pitavastatin 4 mg QD + digoxin 0.25 mg for 7 days ↑ 4% ↓ 9% Diltiazem LA Pitavastatin 4 mg QD on Days 1 to 5 and 11 to 15 and diltiazem LA 240 mg on Days 6 to 15 ↑10% ↑15% Grapefruit Juice Pitavastatin 2 mg single dose on Day 3 + grapefruit juice for 4 days ↑ 15% ↓ 12% Itraconazole Pitavastatin 4 mg single dose on Day 4 + itraconazole 200 mg daily for 5 days ↓ 23% ↓ 22% * Data presented as x-fold change represent the ratio between coadministration and pitavastatin alone (i.e., 1-fold = no change). Data presented as % change represent % difference relative to pitavastatin alone (i.e., 0% = no change). † Considered clinically significant [see Dosage and Administration ( 2.4 ), Drug Interactions ( 7 )] BID = twice daily; QD = once daily; LA = Long Acting Table 4 presents the effect of pitavastatin coadministration on systemic exposure of other drugs: Table 4: Effect of Pitavastatin Coadministration on Systemic Exposure to Other Drugs Coadministered drug Dosage regimen Change in AUC* Change in C max * Atazanavir Pitavastatin 4 mg QD + atazanavir 300 mg daily for 5 days ↑ 6% ↑ 13% Darunavir Pitavastatin 4mg QD on Days 1 to 5 and 12 to 16 + darunavir/ritonavir 800mg/100 mg QD on Days 6 to 16 ↑ 3% ↑ 6% Lopinavir Pitavastatin 4 mg QD on Days 1 to 5 and 20 to 24 + lopinavir/ritonavir 400 mg/100 mg BID on Days 9 to 24 ↓ 9% ↓ 7% Ritonavir Pitavastatin 4 mg QD on Days 1 to 5 and 20 to 24 + lopinavir/ritonavir 400 mg/100 mg BID on Days 9 to 24 ↓ 11% ↓ 11% Ritonavir Pitavastatin 4mg QD on Days 1 to 5 and 12 to 16 + darunavir/ritonavir 800mg/100 mg QD on Days 6 to 16 ↑ 8% ↑ 2% Enalapril Pitavastatin 4 mg QD + enalapril 20 mg daily for 5 days Enalapril ↑ 12% ↑ 12% Enalaprilat ↓ 1% ↓ 1% Warfarin Individualized maintenance dose of warfarin (2 to 7 mg) for 8 days + pitavastatin 4 mg QD for 9 days R-warfarin ↑ 7% ↑ 3% S-warfarin ↑ 6% ↑ 3% Ezetimibe Pitavastatin 2 mg QD + ezetimibe 10 mg for 7 days ↑ 9% ↑ 2% Digoxin Pitavastatin 4 mg QD + digoxin 0.25 mg for 7 days ↓ 3% ↓ 4% Diltiazem LA Pitavastatin 4 mg QD on Days 1 to 5 and 11 to 15 and diltiazem LA 240 mg on Days 6 to 15 ↓ 2% ↓ 7% Rifampin Pitavastatin 4 mg QD + rifampin 600 mg QD for 5 days ↓ 15% ↓ 18% * Data presented as % change represent % difference relative to the investigated drug alone (i.e., 0% = no change). BID = twice daily; QD = once daily; LA = Long Acting
Pharmacokinetics Table
Coadministered drug | Dosage regimen | Change in AUC* | Change in Cmax * |
Cyclosporine | Pitavastatin 2 mg QD for 6 days + cyclosporine 2 mg/kg on Day 6 | ↑ 4.6 fold † | ↑ 6.6 fold † |
Erythromycin | Pitavastatin 4 mg single dose on Day 4 + erythromycin 500 mg 4 times daily for 6 days | ↑ 2.8 fold † | ↑ 3.6 fold † |
Rifampin | Pitavastatin 4 mg QD + rifampin 600 mg QD for 5 days | ↑ 29% | ↑ 2.0 fold † |
Atazanavir | Pitavastatin 4 mg QD + atazanavir 300 mg daily for 5 days | ↑ 31% | ↑ 60% |
Darunavir/Ritonavir | Pitavastatin 4mg QD on Days 1 to 5 and 12 to 16 + darunavir/ritonavir 800mg/100 mg QD on Days 6 to 16 | ↓ 26% | ↓ 4% |
Lopinavir/Ritonavir | Pitavastatin 4 mg QD on Days 1 to 5 and 20 to 24 + lopinavir/ritonavir 400 mg/100 mg BID on Days 9 to 24 | ↓ 20% | ↓4 % |
Gemfibrozil | Pitavastatin 4 mg QD + gemfibrozil 600 mg BID for 7 days | ↑ 45% | ↑ 31% |
Fenofibrate | Pitavastatin 4 mg QD + fenofibrate 160 mg QD for 7 days | ↑18% | ↑ 11% |
Ezetimibe | Pitavastatin 2 mg QD + ezetimibe 10 mg for 7 days | ↓ 2% | ↓0.2% |
Enalapril | Pitavastatin 4 mg QD + enalapril 20 mg daily for 5 days | ↑ 6% | ↓ 7% |
Digoxin | Pitavastatin 4 mg QD + digoxin 0.25 mg for 7 days | ↑ 4% | ↓ 9% |
Diltiazem LA | Pitavastatin 4 mg QD on Days 1 to 5 and 11 to 15 and diltiazem LA 240 mg on Days 6 to 15 | ↑10% | ↑15% |
Grapefruit Juice | Pitavastatin 2 mg single dose on Day 3 + grapefruit juice for 4 days | ↑ 15% | ↓ 12% |
Itraconazole | Pitavastatin 4 mg single dose on Day 4 + itraconazole 200 mg daily for 5 days | ↓ 23% | ↓ 22% |
Effective Time
20230630
Version
13
Dosage Forms And Strengths
3 DOSAGE FORMS AND STRENGTHS Tablets: 1 mg: White to off-white, round, film-coated tablet, debossed with "LU" on one side and "C75" on the other side. 2 mg: White to off-white, round, film-coated tablet, debossed with "LU" on one side and 'C76" on the other side. 4 mg: White to off-white, round, film-coated tablet, debossed with "LU" on one side and "C77" on the other side. Tablets: 1 mg, 2 mg, and 4 mg ( 3 )
Spl Product Data Elements
NIKITA Pitavastatin PITAVASTATIN PITAVASTATIN HYDROXYPROPYL CELLULOSE, LOW SUBSTITUTED HYPROMELLOSE 2910 (5 MPA.S) HYPROMELLOSE 2910 (6 MPA.S) LACTOSE MONOHYDRATE MAGNESIUM STEARATE SILICON DIOXIDE SODIUM BICARBONATE TITANIUM DIOXIDE TRIETHYL CITRATE White to off white LU;C75 NIKITA Pitavastatin PITAVASTATIN PITAVASTATIN HYDROXYPROPYL CELLULOSE, LOW SUBSTITUTED HYPROMELLOSE 2910 (5 MPA.S) HYPROMELLOSE 2910 (6 MPA.S) LACTOSE MONOHYDRATE MAGNESIUM STEARATE SILICON DIOXIDE SODIUM BICARBONATE TITANIUM DIOXIDE TRIETHYL CITRATE White to off white LU;C76 NIKITA Pitavastatin PITAVASTATIN PITAVASTATIN HYDROXYPROPYL CELLULOSE, LOW SUBSTITUTED HYPROMELLOSE 2910 (5 MPA.S) HYPROMELLOSE 2910 (6 MPA.S) LACTOSE MONOHYDRATE MAGNESIUM STEARATE SILICON DIOXIDE SODIUM BICARBONATE TITANIUM DIOXIDE TRIETHYL CITRATE White to off white LU;C77
Carcinogenesis And Mutagenesis And Impairment Of Fertility
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility In a 92-week carcinogenicity study in mice given pitavastatin, at the maximum tolerated dose of 75 mg/kg/day with systemic maximum exposures (AUC) 26 times the clinical maximum exposure at 4 mg daily, there was an absence of drug-related tumors. In a 92-week carcinogenicity study in rats given pitavastatin at 1, 5, 25 mg/kg/day by oral gavage there was a significant increase in the incidence of thyroid follicular cell tumors at 25 mg/kg/day, which represents 295 times human systemic exposures based on AUC at the 4 mg daily maximum human dose. In a 26-week transgenic mouse (Tg rasH2) carcinogenicity study where animals were given pitavastatin at 30, 75, and 150 mg/kg/day by oral gavage, no clinically significant tumors were observed. Pitavastatin was not mutagenic in the Ames test with Salmonella typhimurium and Escherichia coli with and without metabolic activation, the micronucleus test following a single administration in mice and multiple administrations in rats, the unscheduled DNA synthesis test in rats, and a Comet assay in mice. In the chromosomal aberration test, clastogenicity was observed at the highest doses tested, which also elicited high levels of cytotoxicity. Pitavastatin had no adverse effects on male and female rat fertility at oral doses of 10 and 30 mg/kg/day, respectively, at systemic exposures 56- and 354-times clinical exposure at 4 mg daily based on AUC. Pitavastatin treatment in rabbits resulted in mortality in males and females given 1 mg/kg/day (30-times clinical systemic exposure at 4 mg daily based on AUC) and higher during a fertility study. Although the cause of death was not determined, rabbits had gross signs of renal toxicity (kidneys whitened) indicative of possible ischemia. Lower doses (15-times human systemic exposure) did not show significant toxicity in adult males and females. However, decreased implantations, increased resorptions, and decreased viability of fetuses were observed.
Nonclinical Toxicology
13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility In a 92-week carcinogenicity study in mice given pitavastatin, at the maximum tolerated dose of 75 mg/kg/day with systemic maximum exposures (AUC) 26 times the clinical maximum exposure at 4 mg daily, there was an absence of drug-related tumors. In a 92-week carcinogenicity study in rats given pitavastatin at 1, 5, 25 mg/kg/day by oral gavage there was a significant increase in the incidence of thyroid follicular cell tumors at 25 mg/kg/day, which represents 295 times human systemic exposures based on AUC at the 4 mg daily maximum human dose. In a 26-week transgenic mouse (Tg rasH2) carcinogenicity study where animals were given pitavastatin at 30, 75, and 150 mg/kg/day by oral gavage, no clinically significant tumors were observed. Pitavastatin was not mutagenic in the Ames test with Salmonella typhimurium and Escherichia coli with and without metabolic activation, the micronucleus test following a single administration in mice and multiple administrations in rats, the unscheduled DNA synthesis test in rats, and a Comet assay in mice. In the chromosomal aberration test, clastogenicity was observed at the highest doses tested, which also elicited high levels of cytotoxicity. Pitavastatin had no adverse effects on male and female rat fertility at oral doses of 10 and 30 mg/kg/day, respectively, at systemic exposures 56- and 354-times clinical exposure at 4 mg daily based on AUC. Pitavastatin treatment in rabbits resulted in mortality in males and females given 1 mg/kg/day (30-times clinical systemic exposure at 4 mg daily based on AUC) and higher during a fertility study. Although the cause of death was not determined, rabbits had gross signs of renal toxicity (kidneys whitened) indicative of possible ischemia. Lower doses (15-times human systemic exposure) did not show significant toxicity in adult males and females. However, decreased implantations, increased resorptions, and decreased viability of fetuses were observed.
Application Number
NDA209875
Brand Name
NIKITA
Generic Name
Pitavastatin
Product Ndc
68180-744
Product Type
HUMAN PRESCRIPTION DRUG
Route
ORAL
Package Label Principal Display Panel
PACKAGE LABEL.PRINCIPAL DISPLAY PANEL NIKITA (pitavastatin) tablets, 1 mg Bottle of 30 Tablets NDC 68180-742-06 Rx Only NIKITA (pitavastatin) tablets, 2 mg Bottle of 30 Tablets NDC 68180-743-06 Rx Only NIKITA (pitavastatin) tablets, 4 mg Bottle of 30 Tablets NDC 68180-744-06 Rx Only 1 mg 2 mg 4 mg
Recent Major Changes
RECENT MAJOR CHANGES Contraindications, Pregnancy and Lactation ( 4 ) Removed11/2022 Warnings and Precautions, Immune-Mediated Necrotizing Myopathy ( 5.2 ) 11/2022
Information For Patients
17 PATIENT COUNSELING INFORMATION Myopathy and Rhabdomyolysis Advise patients that NIKITA may cause myopathy and rhabdomyolysis. Inform patients that the risk is increased when taking certain types of medication and they should discuss all medication, both prescription and over the counter, with their healthcare provider. Instruct patients to promptly report any unexplained muscle pain, tenderness or weakness particularly if accompanied by malaise or fever [see Warnings and Precautions ( 5.1 )] . Hepatic Dysfunction Inform patients that NIKITA may cause liver enzyme elevations and possibly liver failure. Advise patients to promptly report fatigue, anorexia, right upper abdominal discomfort, dark urine or jaundice [see Warnings and Precautions ( 5.3 )]. Increases in HbA1c and Fasting Serum Glucose Levels Inform patients that increases in HbA1c and fasting serum glucose levels may occur with NIKITA. Encourage patients to optimize lifestyle measures, including regular exercise, maintaining a healthy body weight, and making healthy food choices [see Warnings and Precautions ( 5.4 )]. Pregnancy Advise pregnant patients and patients who become pregnant of the potential risk to a fetus. Advise patients to inform their healthcare provider of a known or suspected pregnancy to discuss if NIKITA should be discontinued [see Use in Specific Populations ( 8.1 )] . Lactation Advise patients that breastfeeding is not recommended during treatment with NIKITA [see Use in Specific Populations ( 8.2 )]. Manufactured for: Lupin Pharmaceuticals, Inc. Baltimore, Maryland 21202 United States Manufactured by: Lupin Limited Nagpur 441 108 INDIA July 2023 ID#: XXXXXX
Clinical Studies
14 CLINICAL STUDIES Primary Hyperlipidemia in Adults Study with Atorvastatin (Study 301) Pitvastatin was compared with atorvastatin calcium tablets (referred to as atorvastatin) in a randomized, multicenter, double-blind, double-dummy, active-controlled, non-inferiority study of 817 adult patients with primary hyperlipidemia or mixed dyslipidemia. Patients entered a 6- to 8-week wash-out/dietary lead-in period and then were randomized to a 12-week treatment with either pitavastatin or atorvastatin (Table 5). Non-inferiority of pitavastatin to a given dose of atorvastatin was considered to be demonstrated if the lower bound of the 95% CI for the mean treatment difference was greater than -6% for the mean percent change in LDL-C. Lipid results are shown in Table 5. For the percent change from baseline to endpoint in LDL-C, pitavastatin was non-inferior to atorvastatin for the two pairwise comparisons: pitavastatin 2 mg vs. atorvastatin 10 mg and pitavastatin 4 mg vs. atorvastatin 20 mg. Mean treatment differences (95% CI) were 0% (-3%, 3%) and 1% (-2%, 4%), respectively. Table 5: Lipid Response by Dose of Pitavastatin and Atorvastatin in Adult Patients with Primary Hyperlipidemia or Mixed Dyslipidemia in Study 301 (Mean % Change from Baseline at Week 12) Treatment N LDL-C Apo-B TC TG HDL-C non-HDL-C Pitavastatin 2 mg daily 315 -38 -30 -28 -14 4 -35 Pitavastatin 4 mg daily 298 -45 -35 -32 -19 5 -41 Atorvastatin 10 mg daily 102 -38 -29 -28 -18 3 -35 Atorvastatin 20 mg daily 102 -44 -36 -33 -22 2 -41 Study with Simvastatin (Study 302) Pitavastatin was compared with simvastatin tablets (referred to as simvastatin) in a randomized, multicenter, double-blind, double-dummy, active-controlled, non-inferiority study of 843 adult patients with primary hyperlipidemia or mixed dyslipidemia. Patients entered a 6- to 8-week wash-out/dietary lead-in period and then were randomized to a 12 week treatment with either pitavastatin or simvastatin (Table 6). Non-inferiority of pitavastatin to a given dose of simvastatin was considered to be demonstrated if the lower bound of the 95% CI for the mean treatment difference was greater than -6% for the mean percent change in LDL-C. Lipid results are shown in Table 6. For the percent change from baseline to endpoint in LDL-C, pitavastatin was non-inferior to simvastatin for the two pairwise comparisons: pitavastatin 2 mg vs. simvastatin 20 mg and pitavastatin 4 mg vs. simvastatin 40 mg. Mean treatment differences (95% CI) were 4% (1%, 7%) and 1% (-2%, 4%), respectively. Table 6: Lipid Response by Dose of Pitavastatin and Simvastatin in Adult Patients with Primary Hyperlipidemiaor Mixed Dyslipidemia in Study 302 (Mean % Change from Baseline at Week 12) Treatment N LDL-C Apo-B TC TG HDL-C non-HDL-C Pitavastatin 2 mg daily 307 -39 -30 -28 -16 6 -36 Pitavastatin 4 mg daily 319 -44 -35 -32 -17 6 -41 Simvastatin 20 mg daily 107 -35 -27 -25 -16 6 -32 Simvastatin 40 mg daily 110 -43 -34 -31 -16 7 -39 Study with Pravastatin in Geriatric Patients (Study 306) Pitavastatin was compared with pravastatin sodium tablets (referred to as pravastatin) in a randomized, multicenter, double-blind, double-dummy, parallel group, active-controlled non-inferiority study of 942 geriatric patients (≥65 years) with primary hyperlipidemia or mixed dyslipidemia. Patients entered a 6- to 8-week wash-out/dietary lead-in period, and then were randomized to a once daily dose of pitavastatin or pravastatin for 12 weeks (Table 7). Non-inferiority of pitavastatin to a given dose of pravastatin was assumed if the lower bound of the 95% CI for the treatment difference was greater than -6% for the mean percent change in LDL-C. Lipid results are shown in Table 7. Pitavastatin significantly reduced LDL-C compared to pravastatin as demonstrated by the following pairwise dose comparisons: pitavastatin 1 mg vs. pravastatin 10 mg, pitavastatin 2 mg vs. pravastatin 20 mg and pitavastatin 4 mg vs. pravastatin 40 mg. Mean treatment differences (95% CI) were 9% (6%, 12%), 10% (7%, 13%) and 10% (7%, 13% ), respectively. Table 7: Lipid Response by Dose of Pitavastatin and Pravastatin in Geriatric Patients with Primary Hyperlipidemia or Mixed Dyslipidemia in Study 306 (Mean % Change from Baseline at Week 12) Treatment N LDL-C Apo-B TC TG HDL-C non-HDL-C Pitavastatin 1 mg daily 207 -31 -25 -22 -13 1 -29 Pitavastatin 2 mg daily 224 -39 -31 -27 -15 2 -36 Pitavastatin 4 mg daily 210 -44 -37 -31 -22 4 -41 Pravastatin 10 mg daily 103 -22 -17 -15 -5 0 -20 Pravastatin 20 mg daily 96 -29 -22 -21 -11 -1 -27 Pravastatin 40 mg daily 102 -34 -28 -24 -15 1 -32 Study with Simvastatin in Patients with ≥ 2 Risk Factors for Coronary Heart Disease (Study 304) Pitavastatin was compared with simvastatin tablets (referred to as simvastatin) in a randomized, multicenter, double-blind, double-dummy, active-controlled, non-inferiority study of 351 adult patients with primary hyperlipidemia or mixed dyslipidemia with ≥2 risk factors for coronary heart disease. After a 6- to 8-week wash-out/dietary lead-in period, patients were randomized to a 12-week treatment with either pitavastatin or simvastatin (Table 8). Non-inferiority of pitavastatin to simvastatin was considered to be demonstrated if the lower bound of the 95% CI for the mean treatment difference was greater than -6% for the mean percent change in LDL-C. Lipid results are shown in Table 8. Pitavastatin 4 mg was non-inferior to simvastatin 40 mg for percent change from baseline to endpoint in LDL-C. The mean treatment difference (95% CI) was 0% (-2%, 3%). Table 8. Lipid Response by Dose of Pitavastatin and Simvastatin in Adult Patients with Primary Hyperlipidemia or Mixed Dyslipidemia with ≥2 Risk Factors for Coronary Heart Disease in Study 304 (Mean % Change from Baseline at Week 12) Treatment N LDL-C Apo-B TC TG HDL-C non-HDL-C Pitavastatin 4 mg daily 233 -44 -34 -31 -20 7 -40 Simvastatin 40 mg daily 118 -44 -34 -31 -15 5 -39 Study with Atorvastatin in Patients with Type 2 Diabetes Mellitus (Study 305) Pitavastatin was compared with atorvastatin calcium tablets (referred to as atorvastatin) in a randomized, multicenter, double-blind, double-dummy, parallel group, active-controlled, non-inferiority study of 410 adult patients with type 2 diabetes mellitus and mixed dyslipidemia. Patients entered a 6- to 8-week washout/dietary lead-in period and were randomized to a once daily dose of pitavastatin or atorvastatin for 12 weeks. Non-inferiority of pitavastatin was considered to be demonstrated if the lower bound of the 95% CI for the mean treatment difference was greater than -6% for the mean percent change in LDL-C. Lipid results are shown in Table 9. The treatment difference (95% CI) for LDL-C percent change from baseline was -2% (-6.2%, 1.5%). The two treatment groups were not statistically different on LDL-C. However, the lower limit of the CI was -6.2%, slightly exceeding the -6% non-inferiority limit. The study failed to demonstrate that pitavastatin was not significantly different than atorvastatin in lowering LDL-C in patients with type 2 diabetes mellitus and mixed dyslipidemia. Table 9: Lipid Response by Dose of Pitavastatin and Atorvastatin in Adult Patients with Type 2 Diabetes Mellitus and Mixed Dyslipidemia in Study 305 (Mean % Change from Baseline at Week 12) Treatment N LDL-C Apo-B TC TG HDL-C non-HDL-C Pitavastatin 4 mg daily 274 -41 -32 -28 -20 7 -36 Atorvastatin 20 mg daily 136 -43 -34 -32 -27 8 -40 The treatment differences in efficacy in LDL-C change from baseline between pitavastatin and active controls (i.e., atorvastatin, simvastatin, or pravastatin) in the active-controlled studies described above are summarized in Figure 1. Figure 1: Treatment Difference in Adjusted Mean Percent Change in LDL-C between Pitavastatin and the Comparator (Atorvastatin, Simvastatin, or Pravastatin) NL=non-inferiority limit. Pediatric use information is approved for Kowa Co Ltd's LIVALO (pitavastatin) tablets. However, due to Kowa Co Ltd's marketing exclusivity rights, this drug product is not labeled with that information. Image
Clinical Studies Table
Treatment | N | LDL-C | Apo-B | TC | TG | HDL-C | non-HDL-C |
Pitavastatin 2 mg daily | 315 | -38 | -30 | -28 | -14 | 4 | -35 |
Pitavastatin 4 mg daily | 298 | -45 | -35 | -32 | -19 | 5 | -41 |
Atorvastatin 10 mg daily | 102 | -38 | -29 | -28 | -18 | 3 | -35 |
Atorvastatin 20 mg daily | 102 | -44 | -36 | -33 | -22 | 2 | -41 |
Geriatric Use
8.5 Geriatric Use In controlled clinical studies, 1,209 (43%) patients were 65 years and older. No overall differences in safety or effectiveness were observed between these patients and younger patients. Advanced age (≥65 years) is a risk factor for NIKITA-associated myopathy and rhabdomyolysis. Dose selection for a geriatric patient should be cautious, reognizing the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy and the higher risk of myopathy. Monitor geriatric patients receiving NIKITA for the increased risk of myopathy [see Warnings and Precautions ( 5.1 )].
Pediatric Use
8.4 Pediatric Use The safety and effectiveness of NIKITA in pediatric patients have not been established. Pediatric use information is approved for Kowa Co Ltd's LIVALO (pitavastatin) tablets. However, due to Kowa Co Ltd's marketing exclusivity rights, this drug product is not labeled with that information.
Pregnancy
8.1 Pregnancy Risk Summary Discontinue NIKITA when pregnancy is recognized. Alternatively, consider the ongoing therapeutic needs of the individual patient. NIKITA decreases synthesis of cholesterol and possibly other biologically active substances derived from cholesterol; therefore, NIKITA may cause fetal harm when administered to pregnant patients based on the mechanism of action [see Clinical Pharmacology ( 12.1 )] . In addition, treatment of hyperlipidemia is not generally necessary during pregnancy. Atherosclerosis is a chronic process and the discontinuation of lipid-lowering drugs during pregnancy should have little impact on the outcome of long-term therapy of primary hyperlipidemia for most patients. Available data from case series and prospective and retrospective observational cohort studies over decades of use with statins in pregnant women have not identified a drug-associated risk of major congenital malformations. Published data from prospective and retrospective observational cohort studies with statin use in pregnant women are insufficient to determine if there is a drug associated risk of miscarriage (see Data). In animal reproduction studies, no embryo-fetal toxicity or congenital malformations were observed in pregnant rats and rabbits orally administered pitavastatin during the period of organogenesis at doses which were 22 and 4 times, respectively, the human exposure at the maximum recommended human dosage (MRHD) of 4 mg, based on AUC [see Data]. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. Data Human Data: A Medicaid cohort linkage study of 1152 statin-exposed pregnant women compared to 886,996 controls did not find a significant teratogenic effect from maternal use of statins in the first trimester of pregnancy, after adjusting for potential confounders – including maternal age, diabetes mellitus, hypertension, obesity, and alcohol and tobacco use – using propensity score-based methods. The relative risk of congenital malformations between the group with statin use and the group with no statin use in the first trimester was 1.07 (95% confidence interval 0.85 to 1.37) after controlling for confounders, particularly pre-existing diabetes mellitus. There were also no statistically significant increases in any of the organ-specific malformations assessed after accounting for confounders. In the majority of pregnancies, statin treatment was initiated prior to pregnancy and was discontinued at some point in the first trimester when pregnancy was identified. Study limitations include reliance on physician coding to define the presence of a malformation, lack of control for certain confounders such as body mass index, use of prescription dispensing as verification for the use of a statin, and lack of information on non-live births. Animal Data: Embryo-fetal developmental studies were conducted in pregnant rats administered 3, 10, 30 mg/kg/day pitavastatin by oral gavage during organogenesis (gestation days 7-17). No adverse effects were observed at 3 mg/kg/day, systemic exposures 22 times human systemic exposure at 4 mg/day based on AUC. Embryo-fetal developmental studies were conducted in pregnant rabbits administered 0.1, 0.3, 1 mg/kg/day pitavastatin by oral gavage during the period of fetal organogenesis (gestation days 6-18). Maternal toxicity consisting of reduced body weight and abortion was observed at all doses tested (4 times human systemic exposure at 4 mg/day based on AUC). In perinatal/postnatal studies in pregnant rats given oral gavage doses of pitavastatin at 0.1, 0.3, 1, 3, 10, 30 mg/kg/day from organogenesis through weaning (gestation day 17 to lactation day 21), maternal toxicity consisting of mortality at ≥0.3 mg/kg/day and impaired lactation at all doses contributed to the decreased survival of neonates in all dose groups (0.1 mg/kg/day represents approximately 1 time human systemic exposure at 4 mg/day dose based on AUC). Reproductive toxicity studies have shown that pitavastatin crosses the placenta in rats and is found in fetal tissues at ≤36% of maternal plasma concentrations following a single dose of 1 mg/kg/day during gestation (at the end of organogenesis).
Use In Specific Populations
8 USE IN SPECIFIC POPULATIONS Pregnancy: May cause fetal harm. ( 8.1 ) Lactation: Breastfeeding not recommended during treatment with NIKITA. ( 8.2 ) Pediatric use information is approved for Kowa Co Ltd's LIVALO (pitavastatin) tablets. However, due to Kowa Co Ltd's marketing exclusivity rights, this drug product is not labeled with that information. 8.1 Pregnancy Risk Summary Discontinue NIKITA when pregnancy is recognized. Alternatively, consider the ongoing therapeutic needs of the individual patient. NIKITA decreases synthesis of cholesterol and possibly other biologically active substances derived from cholesterol; therefore, NIKITA may cause fetal harm when administered to pregnant patients based on the mechanism of action [see Clinical Pharmacology ( 12.1 )] . In addition, treatment of hyperlipidemia is not generally necessary during pregnancy. Atherosclerosis is a chronic process and the discontinuation of lipid-lowering drugs during pregnancy should have little impact on the outcome of long-term therapy of primary hyperlipidemia for most patients. Available data from case series and prospective and retrospective observational cohort studies over decades of use with statins in pregnant women have not identified a drug-associated risk of major congenital malformations. Published data from prospective and retrospective observational cohort studies with statin use in pregnant women are insufficient to determine if there is a drug associated risk of miscarriage (see Data). In animal reproduction studies, no embryo-fetal toxicity or congenital malformations were observed in pregnant rats and rabbits orally administered pitavastatin during the period of organogenesis at doses which were 22 and 4 times, respectively, the human exposure at the maximum recommended human dosage (MRHD) of 4 mg, based on AUC [see Data]. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. Data Human Data: A Medicaid cohort linkage study of 1152 statin-exposed pregnant women compared to 886,996 controls did not find a significant teratogenic effect from maternal use of statins in the first trimester of pregnancy, after adjusting for potential confounders – including maternal age, diabetes mellitus, hypertension, obesity, and alcohol and tobacco use – using propensity score-based methods. The relative risk of congenital malformations between the group with statin use and the group with no statin use in the first trimester was 1.07 (95% confidence interval 0.85 to 1.37) after controlling for confounders, particularly pre-existing diabetes mellitus. There were also no statistically significant increases in any of the organ-specific malformations assessed after accounting for confounders. In the majority of pregnancies, statin treatment was initiated prior to pregnancy and was discontinued at some point in the first trimester when pregnancy was identified. Study limitations include reliance on physician coding to define the presence of a malformation, lack of control for certain confounders such as body mass index, use of prescription dispensing as verification for the use of a statin, and lack of information on non-live births. Animal Data: Embryo-fetal developmental studies were conducted in pregnant rats administered 3, 10, 30 mg/kg/day pitavastatin by oral gavage during organogenesis (gestation days 7-17). No adverse effects were observed at 3 mg/kg/day, systemic exposures 22 times human systemic exposure at 4 mg/day based on AUC. Embryo-fetal developmental studies were conducted in pregnant rabbits administered 0.1, 0.3, 1 mg/kg/day pitavastatin by oral gavage during the period of fetal organogenesis (gestation days 6-18). Maternal toxicity consisting of reduced body weight and abortion was observed at all doses tested (4 times human systemic exposure at 4 mg/day based on AUC). In perinatal/postnatal studies in pregnant rats given oral gavage doses of pitavastatin at 0.1, 0.3, 1, 3, 10, 30 mg/kg/day from organogenesis through weaning (gestation day 17 to lactation day 21), maternal toxicity consisting of mortality at ≥0.3 mg/kg/day and impaired lactation at all doses contributed to the decreased survival of neonates in all dose groups (0.1 mg/kg/day represents approximately 1 time human systemic exposure at 4 mg/day dose based on AUC). Reproductive toxicity studies have shown that pitavastatin crosses the placenta in rats and is found in fetal tissues at ≤36% of maternal plasma concentrations following a single dose of 1 mg/kg/day during gestation (at the end of organogenesis). 8.2 Lactation Risk Summary There is no available information about the prescence of pitavastatin in human or animal milk, the effects of the drug on the breastfed infant, or the effects of the drug on milk production. However, it has been shown that another drug in this class passes into human milk. Statins, including NIKITA, decrease cholesterol synthesis and possibly the synthesis of other biologically active substances derived from cholesterol and may cause harm to the breastfed infant. Because of the potential for serious adverse reactions in a breastfed infant, based upon the mechanism of action, advise patients that breastfeeding is not recommended during treatment with NIKITA. [see Use in Specific Populations ( 8.1 ), Clinical Pharmacology ( 12.1 )] 8.4 Pediatric Use The safety and effectiveness of NIKITA in pediatric patients have not been established. Pediatric use information is approved for Kowa Co Ltd's LIVALO (pitavastatin) tablets. However, due to Kowa Co Ltd's marketing exclusivity rights, this drug product is not labeled with that information. 8.5 Geriatric Use In controlled clinical studies, 1,209 (43%) patients were 65 years and older. No overall differences in safety or effectiveness were observed between these patients and younger patients. Advanced age (≥65 years) is a risk factor for NIKITA-associated myopathy and rhabdomyolysis. Dose selection for a geriatric patient should be cautious, reognizing the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy and the higher risk of myopathy. Monitor geriatric patients receiving NIKITA for the increased risk of myopathy [see Warnings and Precautions ( 5.1 )]. 8.6 Renal Impairment Renal impairment is a risk factor for myopathy and rhabdomyolysis. Monitor all patients with renal impairment for development of myopathy. Due to the risk of myopathy, a dosage modification of NIKITA is recommended for patients with moderate and severe renal impairment (estimated glomerular filtration rate 30 to 59 mL/min/1.73 m 2 and 15 to 29 mL/min/1.73 m 2 , respectively), as well as end-stage renal disease receiving hemodialysis. [see Dosage and Administration ( 2.3 ), Warnings and Precautions ( 5.1 ), Clinical Pharmacology ( 12.3 )] . 8.7 Hepatic Impairment NIKITA is contraindicated in patients with active liver failure or decompensated cirrhosis [see Contraindications ( 4 ), Warnings and Precautions ( 5.3 )] .
How Supplied
16 HOW SUPPLIED/STORAGE AND HANDLING NIKITA tablets are available as follows: Strength Description Bottle Size NDC 1 mg Tablet White to off-white round film-coated tablets debossed with "LU" on one side and "C75" on the other side 30 tablets 68180-742-06 60 tablets 68180-742-07 90 tablets 68180-742-09 2 mg Tablet White to off-white round film-coated tablets debossed with "LU" on one side and "C76" on the other side 30 tablets 68180-743-06 60 tablets 68180-743-07 90 tablets 68180-743-09 4 mg Tablet White to off-white round film-coated tablets debossed with "LU" on one side and "C77" on the other side 30 tablets 68180-744-06 60 tablets 68180-744-07 90 tablets 68180-744-09 Store at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Protect from light.
How Supplied Table
Strength | Description | Bottle Size | NDC |
1 mg Tablet | White to off-white round film-coated tablets debossed with "LU" on one side and "C75" on the other side | 30 tablets | 68180-742-06 |
60 tablets | 68180-742-07 | ||
90 tablets | 68180-742-09 | ||
2 mg Tablet | White to off-white round film-coated tablets debossed with "LU" on one side and "C76" on the other side | 30 tablets | 68180-743-06 |
60 tablets | 68180-743-07 | ||
90 tablets | 68180-743-09 | ||
4 mg Tablet | White to off-white round film-coated tablets debossed with "LU" on one side and "C77" on the other side | 30 tablets | 68180-744-06 |
60 tablets | 68180-744-07 | ||
90 tablets | 68180-744-09 |
Learning Zones
The Learning Zones are an educational resource for healthcare professionals that provide medical information on the epidemiology, pathophysiology and burden of disease, as well as diagnostic techniques and treatment regimens.
Disclaimer
The drug Prescribing Information (PI), including indications, contra-indications, interactions, etc, has been developed using the U.S. Food & Drug Administration (FDA) as a source (www.fda.gov).
Medthority offers the whole library of PI documents from the FDA. Medthority will not be held liable for explicit or implicit errors, or missing data.
Drugs appearing in this section are approved by the FDA. For regions outside of the United States, this content is for informational purposes only and may not be aligned with local regulatory approvals or guidance.