This site is intended for healthcare professionals
Abstract digital waveforms in blue and purple
FDA Drug information

Dexmedetomidine HCl

Read time: 1 mins
Marketing start date: 12 Jan 2025

Summary of product characteristics


Indications And Usage

1 INDICATIONS AND USAGE Dexmedetomidine hydrochloride injection is a relatively selective alpha 2 -adrenergic agonist indicated for: Sedation of non-intubated patients prior to and/or during surgical and other procedures. (1.1) 1.1 Procedural Sedation Dexmedetomidine hydrochloride injection is indicated for sedation of non-intubated patients prior to and/or during surgical and other procedures.

Adverse Reactions

6 ADVERSE REACTIONS The most common adverse reactions (incidence greater than 2%) are hypotension, bradycardia, and dry mouth. (6.1) To report SUSPECTED ADVERSE REACTIONS, contact West-Ward Pharmaceuticals Corp. at 1-877-845-0689, or the FDA at 1-800-FDA-1088 or www.fda.gov/medwatch 6.1 Clinical Studies Experience Because clinical trials are conducted under widely varying conditions, adverse reactions rates observed in the clinical trials of a drug cannot be directly compared to rates in clinical trials of another drug and may not reflect the rates observed in practice. Use of dexmedetomidine hydrochloride has been associated with the following serious adverse reactions: Hypotension, bradycardia and sinus arrest [see Warnings and Precautions (5.2 )] Transient hypertension [see Warnings and Precautions (5.3 )] Most common treatment-emergent adverse reactions, occurring in greater than 2% of patients in procedural sedation studies include hypotension, bradycardia and dry mouth. Procedural Sedation Adverse reaction information is derived from the two trials for procedural sedation [ see Clinical Studies (14.1)] in which 318 adult patients received dexmedetomidine hydrochloride. The mean total dose was 1.6 mcg/kg (range: 0.5 to 6.7), mean dose per hour was 1.3 mcg/kg/hr (range: 0.3 to 6.1) and the mean duration of infusion of 1.5 hours (range: 0.1 to 6.2). The population was between 18 to 93 years of age, ASA I-IV, 30% > 65 years of age, 52% male and 61% Caucasian. Treatment-emergent adverse reactions occurring at an incidence of >2% are provided in Table 2. The most frequent adverse reactions were hypotension, bradycardia, and dry mouth [see Warnings and Precautions (5.2 )] . Pre-­specified criteria for the vital signs to be reported as adverse reactions are footnoted below the table. The decrease in respiratory rate and hypoxia was similar between dexmedetomidine hydrochloride and comparator groups in both studies. Table 2. Adverse Reactions With an Incidence >2%— Procedural Sedation Population Adverse Event Dexmedetomidine hydrochloride N = 318 (%) Placebo N = 113 (%) Hypotension 1 54% 30% Respiratory depression 2 37% 32% Bradycardia 3 14% 4% Hypertension 4 13% 24% Tachycardia 5 5% 17% Nausea 3% 2% Dry mouth 3% 1% Hypoxia 6 2% 3% Bradypnea 2% 4% 1 Hypotension was defined in absolute and relative terms as Systolic blood pressure of <80 mmHg or < 30% lower than pre-study drug infusion value, or Diastolic blood pressure of <50 mmHg 2 Respiratory depression was defined in absolute and relative terms as respiratory rate (RR) <8 beats per minute or >25% decrease from baseline 3 Bradycardia was defined in absolute and relative terms as <40 beats per minute or < 30% lower than pre-study drug infusion value. 4 Hypertension was defined in absolute and relative terms as Systolic blood pressure >180 mmHg or > 30% higher than pre-study drug infusion value or diastolic blood pressure of >100 mmHg. 5 Tachycardia was defined in absolute and relative terms as >120 beats per minute or > 30% greater than pre-study drug infusion value. 6 Hypoxia was defined in absolute and relative terms as SpO 2 <90% or 10% decrease from baseline. 6.2 Postmarketing Experience The following adverse reactions have been identified during post approval use of dexmedetomidine hydrochloride. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Hypotension and bradycardia were the most common adverse reactions associated with the use of dexmedetomidine hydrochloride during post approval use of the drug. Table 3: Adverse Reactions Experienced During Post-approval Use of Dexmedetomidine hydrochloride System Organ Class Preferred Term Blood and Lymphatic System Disorders Anemia Cardiac Disorders Arrhythmia, atrial fibrillation, atrioventricular block, bradycardia, cardiac arrest, cardiac disorder, extrasystoles, myocardial infarction, supraventricular tachycardia, tachycardia, ventricular arrhythmia, ventricular tachycardia Eye Disorders Photopsia, visual impairment Gastrointestinal Disorders Abdominal pain, diarrhea, nausea, vomiting General Disorders and Administration Site Conditions Chills, hyperpyrexia, pain, pyrexia, thirst Hepatobiliary Disorders Hepatic function abnormal, hyperbilirubinemia Investigations Alanine aminotransferase increased, aspartate aminotransferase increased, blood alkaline phosphatase increased, blood urea increased, electrocardiogram T wave inversion, gammaglutamyltransferase increased, electrocardiogram QT prolonged Metabolism and Nutrition Disorders Acidosis, hyperkalemia, hypoglycemia, hypovolemia, hypernatremia Nervous System Disorders Convulsion, dizziness, headache, neuralgia, neuritis, speech disorder Psychiatric Disorders Agitation, confusional state, delirium, hallucination, illusion Renal and Urinary Disorders Oliguria, polyuria Respiratory, Thoracic and Mediastinal Disorders Apnea, bronchospasm, dyspnea, hypercapnia, hypoventilation, hypoxia, pulmonary congestion, respiratory acidosis Skin and Subcutaneous Tissue Disorders Hyperhidrosis Surgical and Medical Procedures Light anesthesia Vascular Disorders Blood pressure fluctuation, hemorrhage, hypertension, hypotension

Contraindications

4 CONTRAINDICATIONS None None. (4)

Description

11 DESCRIPTION Dexmedetomidine hydrochloride Injection is a sterile, nonpyrogenic solution suitable for intravenous infusion following dilution. Dexmedetomidine hydrochloride is the S-enantiomer of medetomidine and is chemically described as 4-[( S )-a,2,3-trimethylbenzyl]imidazole monohydrochloride. Dexmedetomidine hydrochloride has a molecular weight of 236.74 and the molecular formula is C 13 H 16 N 2 • HCl and the structural formula is: Dexmedetomidine hydrochloride is a white or almost white powder that is freely soluble in water and has a pKa of 7.1. Its partition coefficient in-octanol: water at pH 7.4 is 2.89. Dexmedetomidine hydrochloride is supplied as a clear, colorless, isotonic solution with a pH of 4.5 to 7.0. Each mL contains 118 mcg of dexmedetomidine hydrochloride equivalent to 100 mcg (0.1 mg) of dexmedetomidine and 9 mg of sodium chloride in water and is to be used after dilution. The solution is preservative-free and contains no additives or chemical stabilizers. Structural Formula

Dosage And Administration

2 DOSAGE AND ADMINISTRATION Individualize and titrate dexmedetomidine hydrochloride injection dosing to desired clinical effect. (2.1) Administer dexmedetomidine hydrochloride injection using a controlled infusion device. (2.1) Dilute the 200 mcg/2mL (100 mcg/mL) vial contents in 0.9% sodium chloride solution to achieve required concentration (4 mcg/mL) prior to administration. (2.4) For Adult Procedural Sedation: Generally initiate at one mcg/kg over 10 minutes , followed by a maintenance infusion initiated at 0.6 mcg/kg/ hour and titrated to achieve desired clinical effect with doses ranging from 0.2 to 1 mcg/kg/ hour . (2.2) Alternative doses : recommended for patients over 65 years of age and awake fiberoptic intubation patients. (2.2) 2.1 Dosing Guidelines Dexmedetomidine hydrochloride injection dosing should be individualized and titrated to desired clinical response. Dexmedetomidine hydrochloride injection is not indicated for infusions lasting longer than 24 hours. Dexmedetomidine hydrochloride injection should be administered using a controlled infusion device. 2.2 Dosage Information Table 1: Dosage Information INDICATION DOSAGE AND ADMINISTRATION Initiation of Procedural Sedation For adult patients: a loading infusion of one mcg/kg over 10 minutes . For less invasive procedures such as ophthalmic surgery, a loading infusion of 0.5 mcg/kg given over 10 minutes may be suitable. For awake fiberoptic intubation in adult patients: a loading infusion of one mcg/kg over 10 minutes . For patients over 65 years of age : a loading infusion of 0.5 mcg/kg over 10 minutes [ see Use in Specific Populations (8.5) ] . For adult patients with impaired hepatic function: a dose reduction should be considered [ see Use in Specific Populations (8.6), Clinical Pharmacology (12.3 ) ]. Maintenance of Procedural Sedation For adult patients: the maintenance infusion is generally initiated at 0.6 mcg/kg/ hour and titrated to achieve desired clinical effect with doses ranging from 0.2 to 1 mcg/kg/ hour . The rate of the maintenance infusion should be adjusted to achieve the targeted level of sedation. For awake fiberoptic intubation in adult patients: a maintenance infusion of 0.7 mcg/kg/ hour is recommended until the endotracheal tube is secured. For patients over 65 years of age: a dose reduction should be considered [ see Use in Specific Populations (8.5) ] . For adult patients with impaired hepatic function: a dose reduction should be considered [ see Use in Specific Populations (8.6 ), Clinical Pharmacology (12.3) ]. 2.3 Dosage Adjustment Due to possible pharmacodynamic interactions, a reduction in dosage of dexmedetomidine hydrochloride injection or other concomitant anesthetics, sedatives, hypnotics or opioids may be required when co-administered [see Drug Interactions (7.1)]. Dosage reductions may need to be considered for adult patients with hepatic impairment, and geriatric patients [see Warnings and Precautions (5.7), Use in Specific Populations (8.6 ), Clinical Pharmacology (12.3 )]. 2.4 Preparation of Solution Strict aseptic technique must always be maintained during handling of dexmedetomidine hydrochloride injection. Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit. Dexmedetomidine Hydrochloride Injection, 200 mcg/2 mL (100 mcg/mL) Dexmedetomidine hydrochloride injection must be diluted in 0.9% sodium chloride injection to achieve required concentration (4 mcg/mL) prior to administration. Preparation of solutions is the same, whether for the loading dose or maintenance infusion. To prepare the infusion, withdraw 2 mL of dexmedetomidine hydrochloride injection and add to 48 mL of 0.9% sodium chloride injection to a total of 50 mL. Shake gently to mix well. 2.5 Administration with Other Fluids Dexmedetomidine hydrochloride injection infusion should not be co-administered through the same intravenous catheter with blood or plasma because physical compatibility has not been established. Dexmedetomidine hydrochloride injection has been shown to be incompatible when administered with the following drugs: amphotericin B, diazepam. Dexmedetomidine hydrochloride injection has been shown to be compatible when administered with the following intravenous fluids: 0.9% sodium chloride in water 5% dextrose in water 20% mannitol Lactated Ringer’s solution 100 mg/mL magnesium sulfate solution 0.3% potassium chloride solution 2.6 Compatibility with Natural Rubber Compatibility studies have demonstrated the potential for absorption of dexmedetomidine hydrochloride injection to some types of natural rubber. Although dexmedetomidine hydrochloride injection is dosed to effect, it is advisable to use administration components made with synthetic or coated natural rubber gaskets.

Controlled Substance

9.1 Controlled Substance Dexmedetomidine hydrochloride injection is not a controlled substance.

Drug Abuse And Dependence

9 DRUG ABUSE AND DEPENDENCE 9.1 Controlled Substance Dexmedetomidine hydrochloride injection is not a controlled substance. 9.3 Dependence The dependence potential of dexmedetomidine hydrochloride has not been studied in humans. However, since studies in rodents and primates have demonstrated that dexmedetomidine hydrochloride exhibits pharmacologic actions similar to those of clonidine, it is possible that dexmedetomidine hydrochloride may produce a clonidine-like withdrawal syndrome upon abrupt discontinuation [see Warnings and Precautions (5.5) ] .

Overdosage

10 OVERDOSAGE The tolerability of dexmedetomidine hydrochloride was studied in one study in which healthy adult subjects were administered doses at and above the recommended dose of 0.2 to 0.7 mcg/kg/hr. The maximum blood concentration achieved in this study was approximately 13 times the upper boundary of the therapeutic range. The most notable effects observed in two subjects who achieved the highest doses were first degree atrioventricular block and second degree heart block. No hemodynamic compromise was noted with the atrioventricular block and the heart block resolved spontaneously within one minute. One patient who received a loading bolus dose of undiluted dexmedetomidine hydrochloride (19.4 mcg/kg), had cardiac arrest from which he was successfully resuscitated.

Adverse Reactions Table

Adverse Event

Dexmedetomidine hydrochloride

N = 318

(%)

Placebo

N = 113

(%)

Hypotension 1

54%

30%

Respiratory depression 2

37%

32%

Bradycardia 3

14%

4%

Hypertension 4

13%

24%

Tachycardia 5

5%

17%

Nausea

3%

2%

Dry mouth

3%

1%

Hypoxia 6

2%

3%

Bradypnea

2%

4%

Drug Interactions

7 DRUG INTERACTIONS Anesthetics, Sedatives, Hypnotics, Opioids: Enhancement of pharmacodynamic effects. Reduction in dosage of dexmedetomidine hydrochloride or the concomitant medication may be required. (7.1) 7.1 Anesthetics, Sedatives, Hypnotics, Opioids Co-administration of dexmedetomidine hydrochloride with anesthetics, sedatives, hypnotics, and opioids is likely to lead to an enhancement of effects. Specific studies have confirmed these effects with sevoflurane, isoflurane, propofol, alfentanil, and midazolam. No pharmacokinetic interactions between dexmedetomidine hydrochloride and isoflurane, propofol, alfentanil and midazolam have been demonstrated. However, due to possible pharmacodynamic interactions, when co-administered with dexmedetomidine hydrochloride, a reduction in dosage of dexmedetomidine hydrochloride or the concomitant anesthetic, sedative, hypnotic or opioid may be required. 7.2 Neuromuscular Blockers In one study of 10 healthy adult volunteers, administration of dexmedetomidine hydrochloride for 45 minutes at a plasma concentration of 1 ng/mL resulted in no clinically meaningful increases in the magnitude of neuromuscular blockade associated with rocuronium administration.

Clinical Pharmacology

12 CLINICAL PHARMACOLOGY 12.1 Mechanism of Action Dexmedetomidine hydrochloride is a relatively selective alpha 2 -adrenergic agonist with sedative properties. Alpha 2 selectivity is observed in animals following slow intravenous infusion of low and medium doses (10 to 300 mcg/kg). Both alpha 1 and alpha 2 activity is observed following slow intravenous infusion of high doses (≥1000 mcg/kg) or with rapid intravenous administration. 12.2 Pharmacodynamics In a study in healthy volunteers (N=10), respiratory rate and oxygen saturation remained within normal limits and there was no evidence of respiratory depression when dexmedetomidine hydrochloride was administered by intravenous infusion at doses within the recommended dose range (0.2 to 0.7 mcg/kg/hr). 12.3 Pharmacokinetics Following intravenous administration, dexmedetomidine exhibits the following pharmacokinetic parameters: a rapid distribution phase with a distribution half-life (t 1/2 ) of approximately 6 minutes; a terminal elimination half-life (t 1/2 ) of approximately 2 hours; and steady-state volume of distribution (V ss ) of approximately 118 liters. Clearance is estimated to be approximately 39 L/h. The mean body weight associated with this clearance estimate was 72 kg. Dexmedetomidine exhibits linear pharmacokinetics in the dosage range of 0.2 to 0.7 mcg/kg/hr when administered by intravenous infusion for up to 24 hours. Table 4 shows the main pharmacokinetic parameters when dexmedetomidine hydrochloride was infused (after appropriate loading doses) at maintenance infusion rates of 0.17 mcg/kg/hr (target plasma concentration of 0.3 ng/mL) for 12 and 24 hours, 0.33 mcg/kg/hr (target plasma concentration of 0.6 ng/mL) for 24 hours, and 0.7 mcg/kg/hr (target plasma concentration of 1.25 ng/mL) for 24 hours. Table 4. Mean ± SD Pharmacokinetic Parameters Parameter Loading Infusion (min)/Total infusion duration (hrs) 10 min/12 hrs 10 min/24 hrs 10 min/24 hrs 35 min/24 hrs Dexmedetomidine Target Plasma Concentration (ng/mL) and Dose (mcg/kg/hr) 0.3/0.17 0.3/0.17 0.6/0.33 1.25/0.7 t 1/2 *, hour 1.78 ± 0.3 2.22 ± 0.59 2.23 ± 0.21 2.5 ± 0.61 CL, liter/hour 46.3 ± 8.3 43.1 ± 6.5 35.3 ± 6.8 36.5 ± 7.5 V ss , liter 88.7 ± 22.9 102.4 ± 20.3 93.6 ± 17 99.6 ± 17.8 Avg C ss # , ng/mL 0.27 ± 0.05 0.27 ± 0.05 0.67 ± 0.1 1.37 ± 0.2 * Presented as harmonic mean and pseudo standard deviation. # Mean C ss = Average steady-state concentration of dexmedetomidine hydrochloride. The mean C ss was calculated based on post-dose sampling from 2.5 to 9 hours samples for 12 hour infusion and post-dose sampling from 2.5 to 18 hours for 24 hour infusions. The loading doses for each of the above indicated groups were 0.5, 0.5, 1 and 2.2 mcg/kg, respectively. Dexmedetomidine pharmacokinetic parameters after dexmedetomidine hydrochloride maintenance doses of 0.2 to 1.4 mcg/kg/hr for >24 hours were similar to the PK parameters after dexmedetomidine hydrochloride maintenance dosing for <24 hours in other studies. The values for clearance (CL), volume of distribution (V), and t 1/2 were 39.4 L/hr, 152 L, and 2.67 hours, respectively. Distribution The steady-state volume of distribution (V ss ) of dexmedetomidine was approximately 118 liters. Dexmedetomidine protein binding was assessed in the plasma of normal healthy male and female subjects. The average protein binding was 94% and was constant across the different plasma concentrations tested. Protein binding was similar in males and females. The fraction of dexmedetomidine hydrochloride that was bound to plasma proteins was significantly decreased in subjects with hepatic impairment compared to healthy subjects. The potential for protein binding displacement of dexmedetomidine by fentanyl, ketorolac, theophylline, digoxin and lidocaine was explored in vitro , and negligible changes in the plasma protein binding of dexmedetomidine hydrochloride were observed. The potential for protein binding displacement of phenytoin, warfarin, ibuprofen, propranolol, theophylline and digoxin by dexmedetomidine hydrochloride was explored in vitro and none of these compounds appeared to be significantly displaced by dexmedetomidine hydrochloride. Metabolism Dexmedetomidine undergoes almost complete biotransformation with very little unchanged dexmedetomidine excreted in urine and feces. Biotransformation involves both direct glucuronidation as well as cytochrome P450 mediated metabolism. The major metabolic pathways of dexmedetomidine are: direct N-glucuronidation to inactive metabolites; aliphatic hydroxylation (mediated primarily by CYP2A6) of dexmedetomidine to generate 3-hydroxy-dexmedetomidine, the glucuronide of 3-hydroxy-dexmedetomidine, and 3-carboxy­dexmedetomidine; and N methylation of dexmedetomidine to generate 3-hydroxy N-methyl-dexmedetomidine, 3-carboxy N-methyl-dexmedetomidine, and dexmedetomidine-N-methyl O-glucuronide. Elimination The terminal elimination half-life (t 1/2 ) of dexmedetomidine is approximately 2 hours and clearance is estimated to be approximately 39 L/h. A mass balance study demonstrated that after nine days an average of 95% of the radioactivity, following intravenous administration of radiolabeled dexmedetomidine, was recovered in the urine and 4% in the feces. No unchanged dexmedetomidine was detected in the urine. Approximately 85% of the radioactivity recovered in the urine was excreted within 24 hours after the infusion. Fractionation of the radioactivity excreted in urine demonstrated that products of N-glucuronidation accounted for approximately 34% of the cumulative urinary excretion. In addition, aliphatic hydroxylation of parent drug to form 3-hydroxy­dexmedetomidine, the glucuronide of 3-hydroxy-dexmedetomidine, and 3-carboxylic acid-dexmedetomidine together represented approximately 14% of the dose in urine. N-methylation of dexmedetomidine to form 3 hydroxy N-methyl dexmedetomidine, 3-carboxy N-methyl dexmedetomidine, and N-methyl O-glucuronide dexmedetomidine accounted for approximately 18% of the dose in urine. The N-methyl metabolite itself was a minor circulating component and was undetected in urine. Approximately 28% of the urinary metabolites have not been identified. Gender: There was no observed difference in dexmedetomidine hydrochloride pharmacokinetics due to gender. Geriatrics: The pharmacokinetic profile of dexmedetomidine hydrochloride was not altered by age. There were no differences in the pharmacokinetics of dexmedetomidine hydrochloride in young (18 to 40 years), middle age (41 to 65 years), and elderly (>65 years) subjects. Hepatic Impairment: In subjects with varying degrees of hepatic impairment (Child-Pugh Class A, B, or C), clearance values for dexmedetomidine hydrochloride were lower than in healthy subjects. The mean clearance values for patients with mild, moderate, and severe hepatic impairment were 74%, 64% and 53% of those observed in the normal healthy subjects, respectively. Mean clearances for free drug were 59%, 51% and 32% of those observed in the normal healthy subjects, respectively. Although dexmedetomidine hydrochloride is dosed to effect, it may be necessary to consider dose reduction in subjects with hepatic impairment [see Dosage and Administration (2.2), Warnings and Precautions (5.7 )]. Renal Impairment: Dexmedetomidine pharmacokinetics (C max , T max , AUC, t 1/2 , CL, and V ss ) were not significantly different in patients with severe renal impairment (creatinine clearance: <30 mL/min) compared to healthy subjects. Drug Interactions: In vitro studies: In vitro studies in human liver microsomes demonstrated no evidence of cytochrome P450 mediated drug interactions that are likely to be of clinical relevance.

Clinical Pharmacology Table

Parameter

Loading Infusion (min)/Total infusion duration (hrs)

10 min/12 hrs

10 min/24 hrs

10 min/24 hrs

35 min/24 hrs

Dexmedetomidine Target Plasma Concentration (ng/mL) and Dose (mcg/kg/hr)

0.3/0.17

0.3/0.17

0.6/0.33

1.25/0.7

t 1/2*, hour

1.78 ± 0.3

2.22 ± 0.59

2.23 ± 0.21

2.5 ± 0.61

CL, liter/hour

46.3 ± 8.3

43.1 ± 6.5

35.3 ± 6.8

36.5 ± 7.5

V ss, liter

88.7 ± 22.9

102.4 ± 20.3

93.6 ± 17

99.6 ± 17.8

Avg C ss#, ng/mL

0.27 ± 0.05

0.27 ± 0.05

0.67 ± 0.1

1.37 ± 0.2

Mechanism Of Action

12.1 Mechanism of Action Dexmedetomidine hydrochloride is a relatively selective alpha 2 -adrenergic agonist with sedative properties. Alpha 2 selectivity is observed in animals following slow intravenous infusion of low and medium doses (10 to 300 mcg/kg). Both alpha 1 and alpha 2 activity is observed following slow intravenous infusion of high doses (≥1000 mcg/kg) or with rapid intravenous administration.

Pharmacodynamics

12.2 Pharmacodynamics In a study in healthy volunteers (N=10), respiratory rate and oxygen saturation remained within normal limits and there was no evidence of respiratory depression when dexmedetomidine hydrochloride was administered by intravenous infusion at doses within the recommended dose range (0.2 to 0.7 mcg/kg/hr).

Pharmacokinetics

12.3 Pharmacokinetics Following intravenous administration, dexmedetomidine exhibits the following pharmacokinetic parameters: a rapid distribution phase with a distribution half-life (t 1/2 ) of approximately 6 minutes; a terminal elimination half-life (t 1/2 ) of approximately 2 hours; and steady-state volume of distribution (V ss ) of approximately 118 liters. Clearance is estimated to be approximately 39 L/h. The mean body weight associated with this clearance estimate was 72 kg. Dexmedetomidine exhibits linear pharmacokinetics in the dosage range of 0.2 to 0.7 mcg/kg/hr when administered by intravenous infusion for up to 24 hours. Table 4 shows the main pharmacokinetic parameters when dexmedetomidine hydrochloride was infused (after appropriate loading doses) at maintenance infusion rates of 0.17 mcg/kg/hr (target plasma concentration of 0.3 ng/mL) for 12 and 24 hours, 0.33 mcg/kg/hr (target plasma concentration of 0.6 ng/mL) for 24 hours, and 0.7 mcg/kg/hr (target plasma concentration of 1.25 ng/mL) for 24 hours. Table 4. Mean ± SD Pharmacokinetic Parameters Parameter Loading Infusion (min)/Total infusion duration (hrs) 10 min/12 hrs 10 min/24 hrs 10 min/24 hrs 35 min/24 hrs Dexmedetomidine Target Plasma Concentration (ng/mL) and Dose (mcg/kg/hr) 0.3/0.17 0.3/0.17 0.6/0.33 1.25/0.7 t 1/2 *, hour 1.78 ± 0.3 2.22 ± 0.59 2.23 ± 0.21 2.5 ± 0.61 CL, liter/hour 46.3 ± 8.3 43.1 ± 6.5 35.3 ± 6.8 36.5 ± 7.5 V ss , liter 88.7 ± 22.9 102.4 ± 20.3 93.6 ± 17 99.6 ± 17.8 Avg C ss # , ng/mL 0.27 ± 0.05 0.27 ± 0.05 0.67 ± 0.1 1.37 ± 0.2 * Presented as harmonic mean and pseudo standard deviation. # Mean C ss = Average steady-state concentration of dexmedetomidine hydrochloride. The mean C ss was calculated based on post-dose sampling from 2.5 to 9 hours samples for 12 hour infusion and post-dose sampling from 2.5 to 18 hours for 24 hour infusions. The loading doses for each of the above indicated groups were 0.5, 0.5, 1 and 2.2 mcg/kg, respectively. Dexmedetomidine pharmacokinetic parameters after dexmedetomidine hydrochloride maintenance doses of 0.2 to 1.4 mcg/kg/hr for >24 hours were similar to the PK parameters after dexmedetomidine hydrochloride maintenance dosing for <24 hours in other studies. The values for clearance (CL), volume of distribution (V), and t 1/2 were 39.4 L/hr, 152 L, and 2.67 hours, respectively. Distribution The steady-state volume of distribution (V ss ) of dexmedetomidine was approximately 118 liters. Dexmedetomidine protein binding was assessed in the plasma of normal healthy male and female subjects. The average protein binding was 94% and was constant across the different plasma concentrations tested. Protein binding was similar in males and females. The fraction of dexmedetomidine hydrochloride that was bound to plasma proteins was significantly decreased in subjects with hepatic impairment compared to healthy subjects. The potential for protein binding displacement of dexmedetomidine by fentanyl, ketorolac, theophylline, digoxin and lidocaine was explored in vitro , and negligible changes in the plasma protein binding of dexmedetomidine hydrochloride were observed. The potential for protein binding displacement of phenytoin, warfarin, ibuprofen, propranolol, theophylline and digoxin by dexmedetomidine hydrochloride was explored in vitro and none of these compounds appeared to be significantly displaced by dexmedetomidine hydrochloride. Metabolism Dexmedetomidine undergoes almost complete biotransformation with very little unchanged dexmedetomidine excreted in urine and feces. Biotransformation involves both direct glucuronidation as well as cytochrome P450 mediated metabolism. The major metabolic pathways of dexmedetomidine are: direct N-glucuronidation to inactive metabolites; aliphatic hydroxylation (mediated primarily by CYP2A6) of dexmedetomidine to generate 3-hydroxy-dexmedetomidine, the glucuronide of 3-hydroxy-dexmedetomidine, and 3-carboxy­dexmedetomidine; and N methylation of dexmedetomidine to generate 3-hydroxy N-methyl-dexmedetomidine, 3-carboxy N-methyl-dexmedetomidine, and dexmedetomidine-N-methyl O-glucuronide. Elimination The terminal elimination half-life (t 1/2 ) of dexmedetomidine is approximately 2 hours and clearance is estimated to be approximately 39 L/h. A mass balance study demonstrated that after nine days an average of 95% of the radioactivity, following intravenous administration of radiolabeled dexmedetomidine, was recovered in the urine and 4% in the feces. No unchanged dexmedetomidine was detected in the urine. Approximately 85% of the radioactivity recovered in the urine was excreted within 24 hours after the infusion. Fractionation of the radioactivity excreted in urine demonstrated that products of N-glucuronidation accounted for approximately 34% of the cumulative urinary excretion. In addition, aliphatic hydroxylation of parent drug to form 3-hydroxy­dexmedetomidine, the glucuronide of 3-hydroxy-dexmedetomidine, and 3-carboxylic acid-dexmedetomidine together represented approximately 14% of the dose in urine. N-methylation of dexmedetomidine to form 3 hydroxy N-methyl dexmedetomidine, 3-carboxy N-methyl dexmedetomidine, and N-methyl O-glucuronide dexmedetomidine accounted for approximately 18% of the dose in urine. The N-methyl metabolite itself was a minor circulating component and was undetected in urine. Approximately 28% of the urinary metabolites have not been identified. Gender: There was no observed difference in dexmedetomidine hydrochloride pharmacokinetics due to gender. Geriatrics: The pharmacokinetic profile of dexmedetomidine hydrochloride was not altered by age. There were no differences in the pharmacokinetics of dexmedetomidine hydrochloride in young (18 to 40 years), middle age (41 to 65 years), and elderly (>65 years) subjects. Hepatic Impairment: In subjects with varying degrees of hepatic impairment (Child-Pugh Class A, B, or C), clearance values for dexmedetomidine hydrochloride were lower than in healthy subjects. The mean clearance values for patients with mild, moderate, and severe hepatic impairment were 74%, 64% and 53% of those observed in the normal healthy subjects, respectively. Mean clearances for free drug were 59%, 51% and 32% of those observed in the normal healthy subjects, respectively. Although dexmedetomidine hydrochloride is dosed to effect, it may be necessary to consider dose reduction in subjects with hepatic impairment [see Dosage and Administration (2.2), Warnings and Precautions (5.7 )]. Renal Impairment: Dexmedetomidine pharmacokinetics (C max , T max , AUC, t 1/2 , CL, and V ss ) were not significantly different in patients with severe renal impairment (creatinine clearance: <30 mL/min) compared to healthy subjects. Drug Interactions: In vitro studies: In vitro studies in human liver microsomes demonstrated no evidence of cytochrome P450 mediated drug interactions that are likely to be of clinical relevance.

Pharmacokinetics Table

Parameter

Loading Infusion (min)/Total infusion duration (hrs)

10 min/12 hrs

10 min/24 hrs

10 min/24 hrs

35 min/24 hrs

Dexmedetomidine Target Plasma Concentration (ng/mL) and Dose (mcg/kg/hr)

0.3/0.17

0.3/0.17

0.6/0.33

1.25/0.7

t 1/2*, hour

1.78 ± 0.3

2.22 ± 0.59

2.23 ± 0.21

2.5 ± 0.61

CL, liter/hour

46.3 ± 8.3

43.1 ± 6.5

35.3 ± 6.8

36.5 ± 7.5

V ss, liter

88.7 ± 22.9

102.4 ± 20.3

93.6 ± 17

99.6 ± 17.8

Avg C ss#, ng/mL

0.27 ± 0.05

0.27 ± 0.05

0.67 ± 0.1

1.37 ± 0.2

Effective Time

20230503

Version

2

Dosage And Administration Table

INDICATION

DOSAGE AND ADMINISTRATION

Initiation of Procedural Sedation

For adult patients: a loading infusion of one mcg/kg over 10 minutes. For less invasive procedures such as ophthalmic surgery, a loading infusion of 0.5 mcg/kg given over 10 minutes may be suitable.

For awake fiberoptic intubation in adult patients: a loading infusion of one mcg/kg over 10 minutes.

For patients over 65 years of age: a loading infusion of 0.5 mcg/kg over 10 minutes [ see Use in Specific Populations (8.5)].

For adult patients with impaired hepatic function: a dose reduction should be considered [ see Use in Specific Populations (8.6), Clinical Pharmacology (12.3 ) ].

Maintenance of Procedural Sedation

For adult patients: the maintenance infusion is generally initiated at 0.6 mcg/kg/ hour and titrated to achieve desired clinical effect with doses ranging from 0.2 to 1 mcg/kg/ hour. The rate of the maintenance infusion should be adjusted to achieve the targeted level of sedation.

For awake fiberoptic intubation in adult patients: a maintenance infusion of 0.7 mcg/kg/ hour is recommended until the endotracheal tube is secured.

For patients over 65 years of age: a dose reduction should be considered [ see Use in Specific Populations (8.5)].

For adult patients with impaired hepatic function: a dose reduction should be considered [ see Use in Specific Populations (8.6 ), Clinical Pharmacology (12.3)].

Dosage Forms And Strengths

3 DOSAGE FORMS AND STRENGTHS Dexmedetomidine hydrochloride injection, 200 mcg/2 mL (100 mcg/mL) in a glass vial. To be used after dilution. Dexmedetomidine Hydrochloride Injection 200 mcg/2 mL (100 mcg/mL) in a glass vial. To be used after dilution. (3)

Spl Product Data Elements

Dexmedetomidine HCl Dexmedetomidine HCl SODIUM CHLORIDE DEXMEDETOMIDINE HYDROCHLORIDE DEXMEDETOMIDINE

Animal Pharmacology And Or Toxicology

13.2 Animal Toxicology and/or Pharmacology There were no differences in the adrenocorticotropic hormone (ACTH)-stimulated cortisol response in dogs following a single dose of dexmedetomidine compared to saline control. However, after continuous subcutaneous infusions of dexmedetomidine at 3 mcg/kg/hr and 10 mcg/kg/hr for one week in dogs (exposures estimated to be within the clinical range), the ACTH-stimulated cortisol response was diminished by approximately 27% and 40%, respectively, compared to saline-treated control animals indicating a dose-dependent adrenal suppression.

Carcinogenesis And Mutagenesis And Impairment Of Fertility

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility Animal carcinogenicity studies have not been performed with dexmedetomidine. Dexmedetomidine was not mutagenic in vitro , in either the bacterial reverse mutation assay ( E. coli and Salmonella typhimurium ) or the mammalian cell forward mutation assay (mouse lymphoma). Dexmedetomidine was clastogenic in the in vitro human lymphocyte chromosome aberration test with, but not without, rat S9 metabolic activation. In contrast, dexmedetomidine was not clastogenic in the in vitro human lymphocyte chromosome aberration test with or without human S9 metabolic activation. Although dexmedetomidine was clastogenic in an in vivo mouse micronucleus test in NMRI mice, there was no evidence of clastogenicity in CD-1 mice. Fertility in male or female rats was not affected after daily subcutaneous injections of dexmedetomidine at doses up to 54 mcg/kg (less than the maximum recommended human intravenous dose on a mcg/m 2 basis) administered from 10 weeks prior to mating in males, and 3 weeks prior to mating and during mating in females.

Nonclinical Toxicology

13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility Animal carcinogenicity studies have not been performed with dexmedetomidine. Dexmedetomidine was not mutagenic in vitro , in either the bacterial reverse mutation assay ( E. coli and Salmonella typhimurium ) or the mammalian cell forward mutation assay (mouse lymphoma). Dexmedetomidine was clastogenic in the in vitro human lymphocyte chromosome aberration test with, but not without, rat S9 metabolic activation. In contrast, dexmedetomidine was not clastogenic in the in vitro human lymphocyte chromosome aberration test with or without human S9 metabolic activation. Although dexmedetomidine was clastogenic in an in vivo mouse micronucleus test in NMRI mice, there was no evidence of clastogenicity in CD-1 mice. Fertility in male or female rats was not affected after daily subcutaneous injections of dexmedetomidine at doses up to 54 mcg/kg (less than the maximum recommended human intravenous dose on a mcg/m 2 basis) administered from 10 weeks prior to mating in males, and 3 weeks prior to mating and during mating in females. 13.2 Animal Toxicology and/or Pharmacology There were no differences in the adrenocorticotropic hormone (ACTH)-stimulated cortisol response in dogs following a single dose of dexmedetomidine compared to saline control. However, after continuous subcutaneous infusions of dexmedetomidine at 3 mcg/kg/hr and 10 mcg/kg/hr for one week in dogs (exposures estimated to be within the clinical range), the ACTH-stimulated cortisol response was diminished by approximately 27% and 40%, respectively, compared to saline-treated control animals indicating a dose-dependent adrenal suppression.

Application Number

ANDA205046

Brand Name

Dexmedetomidine HCl

Generic Name

Dexmedetomidine HCl

Product Ndc

71872-7218

Product Type

HUMAN PRESCRIPTION DRUG

Route

INTRAVENOUS

Package Label Principal Display Panel

PACKAGE/LABEL PRINCIPAL DISPLAY PANEL - VIAL LABEL Rx only 2 mL Vial Dexmedetomidine HCl Injection 200 mcg/2mL (100 mcg/mL) Dexmedetomidine For Intravenous Use MUST BE DILUTED dexmvial

Information For Patients

17 PATIENT COUNSELING INFORMATION Dexmedetomidine hydrochloride is indicated for short-term intravenous sedation. Dosage must be individualized and titrated to the desired clinical effect. Blood pressure, heart rate and oxygen levels will be monitored both continuously during the infusion of dexmedetomidine hydrochloride and as clinically appropriate after discontinuation. When dexmedetomidine hydrochloride is infused for more than 6 hours, patients should be informed to report nervousness, agitation, and headaches that may occur for up to 48 hours. Additionally, patients should be informed to report symptoms that may occur within 48 hours after the administration of dexmedetomidine hydrochloride such as: weakness, confusion, excessive sweating, weight loss, abdominal pain, salt cravings, diarrhea, constipation, dizziness or light-headedness. Manufactured by: HIKMA FARMACÊUTICA (PORTUGAL), S.A. Estrada do Rio da Mó, 8, 8A e 8B – Fervença – 2705-906 Terrugem SNT, PORTUGAL Distributed by: West-Ward Pharmaceuticals Eatontown, NJ 07724 USA Revised May 2017 PIN410-WES/4

Clinical Studies

14 CLINICAL STUDIES The safety and efficacy of dexmedetomidine hydrochloride has been evaluated in two randomized, double-blind, placebo-controlled multicenter clinical trials in 431 adult patients. 14.1 Procedural Sedation The safety and efficacy of dexmedetomidine hydrochloride for sedation of non-intubated patients prior to and/or during surgical and other procedures was evaluated in two randomized, double-blind, placebo-controlled multicenter clinical trials. Study 1 evaluated the sedative properties of dexmedetomidine hydrochloride in patients having a variety of elective surgeries/procedures performed under monitored anesthesia care. Study 2 evaluated dexmedetomidine hydrochloride in patients undergoing awake fiberoptic intubation prior to a surgical or diagnostic procedure. In Study 1, the sedative properties of dexmedetomidine hydrochloride were evaluated by comparing the percent of patients not requiring rescue midazolam to achieve a specified level of sedation using the standardized Observer’s Assessment of Alertness/Sedation Scale (Table 5). Table 5 Observer’s Assessment of Alertness/Sedation Assessment Categories Responsiveness Speech Facial Expression Eyes Composite Score Responds readily to name spoken in normal tone Normal Normal Clear, no ptosis 5 (alert) Lethargic response to name spoken in normal tone Mild slowing or thickening Mild relaxation Glazed or mild ptosis (less than half the eye) 4 Responds only after name is called loudly and/or repeatedly Slurring or prominent slowing Marked relaxation (slack jaw) Glazed and marked ptosis (half the eye or more) 3 Responds only after mild prodding or shaking Few recognizable words -- -- 2 Does not respond to mild prodding or shaking -- -- -- 1 (deep sleep) Patients were randomized to receive a loading infusion of either dexmedetomidine hydrochloride 1 mcg/kg, dexmedetomidine hydrochloride 0.5 mcg/kg, or placebo (normal saline) given over 10 minutes and followed by a maintenance infusion started at 0.6 mcg/kg/hr. The maintenance infusion of study drug could be titrated from 0.2 mcg/kg/hr to 1 mcg/kg/hr to achieve the targeted sedation score (Observer’s Assessment of Alertness/Sedation Scale ≤4). Patients were allowed to receive rescue midazolam as needed to achieve and/or maintain an Observer’s Assessment of Alertness/Sedation Scale < 4. After achieving the desired level of sedation, a local or regional anesthetic block was performed. Demographic characteristics were similar between the dexmedetomidine hydrochloride and comparator groups. Efficacy results showed that dexmedetomidine hydrochloride was more effective than the comparator group when used to sedate non-intubated patients requiring monitored anesthesia care during surgical and other procedures. (see Table 7) In Study 2, the sedative properties of dexmedetomidine hydrochloride were evaluated by comparing the percent of patients requiring rescue midazolam to achieve or maintain a specified level of sedation using the Ramsay Sedation Scale score > 2 (see Table 6). Table 6: Ramsay Level of Sedation Scale Clinical Score Level of Sedation Achieved 6 Asleep, no response 5 Asleep, sluggish response to light glabellar tap or loud auditory stimulus 4 Asleep, but with brisk response to light glabellar tap or loud auditory stimulus 3 Patient responds to commands 2 Patient cooperative, oriented, and tranquil 1 Patient anxious, agitated, or restless Patients were randomized to receive a loading infusion of dexmedetomidine hydrochloride 1 mcg/kg or placebo (normal saline) given over 10 minutes and followed by a fixed maintenance infusion of 0.7 mcg/kg/hr. After achieving the desired level of sedation, topicalization of the airway occurred. Patients were allowed to receive rescue midazolam as needed to achieve and/or maintain a Ramsay Sedation Scale > 2. Demographic characteristics were similar between the dexmedetomidine hydrochloride and comparator groups. For efficacy results see Table 7. Table 7. Key Efficacy Results of Procedural Sedation Studies Study Loading Infusion Treatment Arm Number of Patients Enrolled a % Not Requiring Midazolam Rescue Confidence b Interval on the Difference vs. Placebo Mean (SD) Total Dose (mg) of Rescue Midazolam Required Confidence b Intervals of the Mean Rescue Dose Study 1 Dexmedetomidine 0.5 mcg/kg 134 40 37 (27,48) 1.4 (1.7) -2.7 (-3.4, -2) Dexmedetomidine 1 mcg/kg 129 54 51 (40,62) 0.9 (1.5) -3.1 (-3.8, -2.5) placebo 63 3 − 4.1 (3) − Study 2 Dexmedetomidine 1 mcg/kg 55 53 39 (20,57) 1.1 (1.5) -1.8 (-2.7, -0.9) placebo 50 14 − 2.9 (3) − a Based on ITT population defined as all randomized and treated patients. b Normal approximation to the binomial with continuity correction.

Clinical Studies Table

Assessment Categories

Responsiveness

Speech

Facial Expression

Eyes

Composite Score

Responds readily to name spoken in normal tone

Normal

Normal

Clear, no ptosis

5 (alert)

Lethargic response to name spoken in normal tone

Mild slowing or thickening

Mild relaxation

Glazed or mild ptosis (less than half the eye)

4

Responds only after name is called loudly and/or repeatedly

Slurring or prominent slowing

Marked relaxation (slack jaw)

Glazed and marked ptosis (half the eye or more)

3

Responds only after mild prodding or shaking

Few recognizable words

--

--

2

Does not respond to mild prodding or shaking

--

--

--

1 (deep sleep)

Geriatric Use

8.5 Geriatric Use Procedural Sedation A total of 131 patients in the clinical studies were 65 years of age and over. A total of 47 patients were 75 years of age and over. Hypotension occurred in a higher incidence in dexmedetomidine hydrochloride-treated patients 65 years or older (72%) and 75 years or older (74%) as compared to patients <65 years (47%). A reduced loading dose of 0.5 mcg/kg given over 10 minutes is recommended and a reduction in the maintenance infusion should be considered for patients greater than 65 years of age.

Labor And Delivery

8.2 Labor and Delivery The safety of dexmedetomidine hydrochloride during labor and delivery has not been studied.

Nursing Mothers

8.3 Nursing Mothers It is not known whether dexmedetomidine hydrochloride is excreted in human milk. Radio-labeled dexmedetomidine administered subcutaneously to lactating female rats was excreted in milk. Because many drugs are excreted in human milk, caution should be exercised when dexmedetomidine hydrochloride is administered to a nursing woman.

Pediatric Use

8.4 Pediatric Use Safety and efficacy have not been established for Procedural Sedation in pediatric patients. The use of dexmedetomidine for procedural sedation in pediatric patients has not been evaluated.

Pregnancy

8.1 Pregnancy Teratogenic Effects: Pregnancy Category C: There are no adequate and well-controlled studies of dexmedetomidine hydrochloride use in pregnant women. In an in vitro human placenta study, placental transfer of dexmedetomidine occurred. In a study in the pregnant rat, placental transfer of dexmedetomidine was observed when radiolabeled dexmedetomidine was administered subcutaneously. Thus, fetal exposure should be expected in humans, and dexmedetomidine hydrochloride should be used during pregnancy only if the potential benefits justify the potential risk to the fetus. Teratogenic effects were not observed in rats following subcutaneous administration of dexmedetomidine during the period of fetal organogenesis (from gestation day 5 to 16) with doses up to 200 mcg/kg (representing a dose approximately equal to the maximum recommended human intravenous dose based on body surface area) or in rabbits following intravenous administration of dexmedetomidine during the period of fetal organogenesis (from gestation day 6 to 18) with doses up to 96 mcg/kg (representing approximately half the human exposure at the maximum recommended dose based on plasma area under the time-curve comparison). However, fetal toxicity, as evidenced by increased post-implantation losses and reduced live pups, was observed in rats at a subcutaneous dose of 200 mcg/kg. The no-effect dose in rats was 20 mcg/kg (representing a dose less than the maximum recommended human intravenous dose based on a body surface area comparison). In another reproductive toxicity study when dexmedetomidine was administered subcutaneously to pregnant rats at 8 and 32 mcg/kg (representing a dose less than the maximum recommended human intravenous dose based on a body surface area comparison) from gestation day 16 through weaning, lower offspring weights were observed. Additionally, when offspring of the 32 mcg/kg group were allowed to mate, elevated fetal and embryocidal toxicity and delayed motor development was observed in second generation offspring.

Use In Specific Populations

8 USE IN SPECIFIC POPULATIONS Geriatric patients: Dose reduction should be considered ( 2.2 , 2.3 , 5.1 , 8.5 ) Hepatic Impairment: Dose reduction should be considered (2.1 , 2.2 , 2.3 , 5.7 , 8.6 ) Pregnancy: Based on animal data, may cause fetal harm ( 8.1 ) Nursing Mothers: Caution should be exercised when administered to a nursing woman ( 8.3 ) See 17 for PATIENT COUNSELING INFORMATION. Revised:05/2017 8.1 Pregnancy Teratogenic Effects: Pregnancy Category C: There are no adequate and well-controlled studies of dexmedetomidine hydrochloride use in pregnant women. In an in vitro human placenta study, placental transfer of dexmedetomidine occurred. In a study in the pregnant rat, placental transfer of dexmedetomidine was observed when radiolabeled dexmedetomidine was administered subcutaneously. Thus, fetal exposure should be expected in humans, and dexmedetomidine hydrochloride should be used during pregnancy only if the potential benefits justify the potential risk to the fetus. Teratogenic effects were not observed in rats following subcutaneous administration of dexmedetomidine during the period of fetal organogenesis (from gestation day 5 to 16) with doses up to 200 mcg/kg (representing a dose approximately equal to the maximum recommended human intravenous dose based on body surface area) or in rabbits following intravenous administration of dexmedetomidine during the period of fetal organogenesis (from gestation day 6 to 18) with doses up to 96 mcg/kg (representing approximately half the human exposure at the maximum recommended dose based on plasma area under the time-curve comparison). However, fetal toxicity, as evidenced by increased post-implantation losses and reduced live pups, was observed in rats at a subcutaneous dose of 200 mcg/kg. The no-effect dose in rats was 20 mcg/kg (representing a dose less than the maximum recommended human intravenous dose based on a body surface area comparison). In another reproductive toxicity study when dexmedetomidine was administered subcutaneously to pregnant rats at 8 and 32 mcg/kg (representing a dose less than the maximum recommended human intravenous dose based on a body surface area comparison) from gestation day 16 through weaning, lower offspring weights were observed. Additionally, when offspring of the 32 mcg/kg group were allowed to mate, elevated fetal and embryocidal toxicity and delayed motor development was observed in second generation offspring. 8.2 Labor and Delivery The safety of dexmedetomidine hydrochloride during labor and delivery has not been studied. 8.3 Nursing Mothers It is not known whether dexmedetomidine hydrochloride is excreted in human milk. Radio-labeled dexmedetomidine administered subcutaneously to lactating female rats was excreted in milk. Because many drugs are excreted in human milk, caution should be exercised when dexmedetomidine hydrochloride is administered to a nursing woman. 8.4 Pediatric Use Safety and efficacy have not been established for Procedural Sedation in pediatric patients. The use of dexmedetomidine for procedural sedation in pediatric patients has not been evaluated. 8.5 Geriatric Use Procedural Sedation A total of 131 patients in the clinical studies were 65 years of age and over. A total of 47 patients were 75 years of age and over. Hypotension occurred in a higher incidence in dexmedetomidine hydrochloride-treated patients 65 years or older (72%) and 75 years or older (74%) as compared to patients <65 years (47%). A reduced loading dose of 0.5 mcg/kg given over 10 minutes is recommended and a reduction in the maintenance infusion should be considered for patients greater than 65 years of age. 8.6 Hepatic Impairment Since dexmedetomidine hydrochloride clearance decreases with increasing severity of hepatic impairment, dose reduction should be considered in patients with impaired hepatic function [see Dosage and Administration (2.2 ) and Clinical Pharmacology (12.3)].

How Supplied

16 HOW SUPPLIED/STORAGE AND HANDLING Dexmedetomidine Hydrochloride Injection is available as: NDC 0143-9532-25 - 200 mcg/2 mL (100 mcg/mL) in 2 mL clear glass vial, carton of 25. The strength is based on the dexmedetomidine base. Vials are intended for single use only. Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature].

Learning Zones

The Learning Zones are an educational resource for healthcare professionals that provide medical information on the epidemiology, pathophysiology and burden of disease, as well as diagnostic techniques and treatment regimens.

Disclaimer

The drug Prescribing Information (PI), including indications, contra-indications, interactions, etc, has been developed using the U.S. Food & Drug Administration (FDA) as a source (www.fda.gov).

Medthority offers the whole library of PI documents from the FDA. Medthority will not be held liable for explicit or implicit errors, or missing data.

Drugs appearing in this section are approved by the FDA. For regions outside of the United States, this content is for informational purposes only and may not be aligned with local regulatory approvals or guidance.